
If $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ (where a, b, c are different positive real numbers ≠ 1) then find the value of $ abc $ .
Answer
573.6k+ views
Hint: A logarithm, of a base b, is the power to which the base needs to be raised to yield a given number. We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , so first convert the given logarithmic terms with bases to this form using this conversion. And then solve the remaining solution referring to the below mentioned formula.
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

