Answer
Verified
450k+ views
Hint: A logarithm, of a base b, is the power to which the base needs to be raised to yield a given number. We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , so first convert the given logarithmic terms with bases to this form using this conversion. And then solve the remaining solution referring to the below mentioned formula.
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Formulas used:
$ {\log _b}a = \dfrac{{\log a}}{{\log b}} $
If $ x + y + z = 0 $ , then $ {x^3} + {y^3} + {z^3} = 3xyz $ and vice-versa.
Complete step-by-step answer:
We are given a logarithmic equation $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ where a, b, c are different positive real numbers ≠ 1.
We have to find the value of $ abc $ .
As we already know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ .
Therefore, Using the above conversion we are converting the logarithmic terms present in the given equation into this fractional form.
$ {\log _c}a = \dfrac{{\log a}}{{\log c}} $
$ {\log _a}b = \dfrac{{\log b}}{{\log a}} $
$ {\log _c}b = \dfrac{{\log b}}{{\log c}} $
$ {\log _a}c = \dfrac{{\log c}}{{\log a}} $
$ {\log _b}c = \dfrac{{\log c}}{{\log b}} $
On substituting all the obtained fractional terms in $ {\log _b}a.{\log _c}a + {\log _a}b.{\log _c}b + {\log _a}c.{\log _b}c = 3 $ , we get
$ \left( {\dfrac{{\log a}}{{\log b}} \times \dfrac{{\log a}}{{\log c}}} \right) + \left( {\dfrac{{\log b}}{{\log a}} \times \dfrac{{\log b}}{{\log c}}} \right) + \left( {\dfrac{{\log c}}{{\log a}} \times \dfrac{{\log c}}{{\log b}}} \right) = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^2}}}{{\log b.\log c}} + \dfrac{{{{\left( {\log b} \right)}^2}}}{{\log a.\log c}} + \dfrac{{{{\left( {\log c} \right)}^2}}}{{\log a.\log b}} = 3 $
Take out the LCM and convert the above left hand side into a single fraction, the LCM is $ \log a.\log b.\log c $
$ \Rightarrow \dfrac{{\log a \times {{\left( {\log a} \right)}^2} + \log b \times {{\left( {\log b} \right)}^2} + \log c \times {{\left( {\log c} \right)}^2}}}{{\log a.\log b.\log c}} = 3 $
$ \Rightarrow \dfrac{{{{\left( {\log a} \right)}^3} + {{\left( {\log b} \right)}^3} + {{\left( {\log c} \right)}^3}}}{{\log a.\log b.\log c}} = 3 $
On cross multiplication, we get
$ \Rightarrow {\left( {\log a} \right)^3} + {\left( {\log b} \right)^3} + {\left( {\log c} \right)^3} = 3 \times \left( {\log a.\log b.\log c} \right) = 3\log a.\log b.\log c $
As we can see, the above equation is in the form of $ {x^3} + {y^3} + {z^3} = 3xyz $ , where x is $ \log a $ , y is $ \log b $ and z is $ \log c $
Therefore, $ x + y + z $ must be equal to zero which means $ \log a + \log b + \log c = 0 $
We know that $ \log a + \log b $ is equal to $ \log ab $
Therefore, $ \log a + \log b + \log c = \log abc $
$ \log abc = 0 $
Sending the logarithm to the right hand side (as $ \log abc $ is a common logarithm it will have a base 10)
$ abc = {10^0} = 1 $ (Anything to the power zero is equal to 1)
Therefore, the value of $ abc $ is 1.
So, the correct answer is “1”.
Note: We know that $ {\log _b}a = \dfrac{{\log a}}{{\log b}} $ , which can also be written as $ \dfrac{1}{{\left( {\dfrac{{\log b}}{{\log a}}} \right)}} = \dfrac{1}{{{{\log }_a}b}} $ . And while finding the value of $ {\log _b}a $ , confirm that b is always greater than zero and never equal 1; a must be a positive real number. If $ {\log _b}a = k $ , then $ a = {b^k} $
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers