Answer
Verified
499.2k+ views
Hint – In this problem we have to find the subtraction of minimum and the maximum value of the given expression, first try and convert the given equation into perfect square form all into a single trigonometric ratio either cos or sin using various trigonometric identities and algebraic identities. Then use the range of that remaining single trigonometric ratio to get the answer.
Complete step-by-step answer:
Given equation is
$4 + \dfrac{1}{2}{\sin ^2}2x - 2{\cos ^4}x$
Now as we know $\sin 2x = 2\sin x\cos x,\;{\sin ^2}x = \left( {1 - {{\cos }^2}x} \right)$
So, substitute this value in above equation we have,
$
\Rightarrow 4 + \dfrac{1}{2}{\left( {2\sin x\cos x} \right)^2} - 2{\cos ^4}x \\
\Rightarrow 4 + \dfrac{4}{2}{\sin ^2}x{\cos ^2}x - 2{\cos ^4}x \\
\Rightarrow 4 + 2\left( {1 - {{\cos }^2}x} \right){\cos ^2}x - 2{\cos ^4}x \\
$
Now simplify the above equation we have,
$ \Rightarrow 4 + 2{\cos ^2}x - 4{\cos ^4}x$
Now take (-4) common we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x} \right)$
Now in bracket add and subtract by $\dfrac{1}{{16}}$ we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x + \dfrac{1}{{16}} - \dfrac{1}{{16}}} \right)$
Now make a complete square we have,
$ \Rightarrow - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right]$
Now as we know $0 \leqslant {\cos ^2}x \leqslant 1$
Now subtract by $\dfrac{1}{4}$ in above equation we have,
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant 1 - \dfrac{1}{4}$
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant \dfrac{3}{4}$
Now squaring on both sides we have, when we square the extreme L.H.S becomes zero
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant {\left( {\dfrac{3}{4}} \right)^2}$
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant \dfrac{9}{{16}}$
Now subtract by $\dfrac{{ - 17}}{{16}}$ in the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{9}{{16}} - \dfrac{{17}}{{16}}$
Now simplify the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{{ - 1}}{2}$
Now multiply by (-4) throughout we have, (when we multiply by negative value the inequality sign changes).
\[ - 4\left( { - \dfrac{{17}}{{16}}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant - 4\left( {\dfrac{{ - 1}}{2}} \right)\]
Now simplify the above equation we have,
\[\left( {\dfrac{{17}}{4}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant 2\]
So, from the above equation it is clear that the minimum value (m) =2, and the maximum value (M) = $\dfrac{{17}}{4}$ of the given equation.
So the value of (M-m) is
$ \Rightarrow \left( {M - m} \right) = \dfrac{{17}}{4} - 2 = \dfrac{9}{4}$.
Hence option (a) is correct.
Note – Whenever we face such type of problems there can be two ways first one is being explained above however the another method is a bit lengthy and it involves the concept of maxima and minima by single differentiating first to get the values at which max or minima can occur and then double differentiating to be sure that whether it’s a max or min. Both of these concepts will help you get on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
$4 + \dfrac{1}{2}{\sin ^2}2x - 2{\cos ^4}x$
Now as we know $\sin 2x = 2\sin x\cos x,\;{\sin ^2}x = \left( {1 - {{\cos }^2}x} \right)$
So, substitute this value in above equation we have,
$
\Rightarrow 4 + \dfrac{1}{2}{\left( {2\sin x\cos x} \right)^2} - 2{\cos ^4}x \\
\Rightarrow 4 + \dfrac{4}{2}{\sin ^2}x{\cos ^2}x - 2{\cos ^4}x \\
\Rightarrow 4 + 2\left( {1 - {{\cos }^2}x} \right){\cos ^2}x - 2{\cos ^4}x \\
$
Now simplify the above equation we have,
$ \Rightarrow 4 + 2{\cos ^2}x - 4{\cos ^4}x$
Now take (-4) common we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x} \right)$
Now in bracket add and subtract by $\dfrac{1}{{16}}$ we have,
$ \Rightarrow - 4\left( { - 1 - \dfrac{1}{2}{{\cos }^2}x + {{\cos }^4}x + \dfrac{1}{{16}} - \dfrac{1}{{16}}} \right)$
Now make a complete square we have,
$ \Rightarrow - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right]$
Now as we know $0 \leqslant {\cos ^2}x \leqslant 1$
Now subtract by $\dfrac{1}{4}$ in above equation we have,
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant 1 - \dfrac{1}{4}$
$\dfrac{{ - 1}}{4} \leqslant {\cos ^2}x - \dfrac{1}{4} \leqslant \dfrac{3}{4}$
Now squaring on both sides we have, when we square the extreme L.H.S becomes zero
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant {\left( {\dfrac{3}{4}} \right)^2}$
$0 \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} \leqslant \dfrac{9}{{16}}$
Now subtract by $\dfrac{{ - 17}}{{16}}$ in the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{9}{{16}} - \dfrac{{17}}{{16}}$
Now simplify the above equation we have,
$ - \dfrac{{17}}{{16}} \leqslant {\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)^2} - \dfrac{{17}}{{16}} \leqslant \dfrac{{ - 1}}{2}$
Now multiply by (-4) throughout we have, (when we multiply by negative value the inequality sign changes).
\[ - 4\left( { - \dfrac{{17}}{{16}}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant - 4\left( {\dfrac{{ - 1}}{2}} \right)\]
Now simplify the above equation we have,
\[\left( {\dfrac{{17}}{4}} \right) \geqslant - 4\left[ {{{\left( {{{\cos }^2}x - \dfrac{1}{4}} \right)}^2} - \dfrac{{17}}{{16}}} \right] \geqslant 2\]
So, from the above equation it is clear that the minimum value (m) =2, and the maximum value (M) = $\dfrac{{17}}{4}$ of the given equation.
So the value of (M-m) is
$ \Rightarrow \left( {M - m} \right) = \dfrac{{17}}{4} - 2 = \dfrac{9}{4}$.
Hence option (a) is correct.
Note – Whenever we face such type of problems there can be two ways first one is being explained above however the another method is a bit lengthy and it involves the concept of maxima and minima by single differentiating first to get the values at which max or minima can occur and then double differentiating to be sure that whether it’s a max or min. Both of these concepts will help you get on the right track to reach the answer.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE