Answer
Verified
468.6k+ views
Hint: Rationalize the given function and put $\dfrac{1}{x} = 0$ in the obtained result because $x \to - \infty $ .Then sove to find the value of a and b.
Complete step-by-step answer:
Given function is $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right) = 2$
It is in $\infty - \infty $ indeterminate form. So we can solve it by rationalizing.
On rationalizing the given function we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) \times \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$ We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , On applying this in the above equation we get,
$ \Rightarrow $ \[\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} } \right)}^2} - {{\left( {\sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}^2}} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2\]
On solving we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - \left( {{x^6} - 2{x^5} + {x^3} + x + 1} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On multiplying the negative sign inside the bracket,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - {x^6} + 2{x^5} - {x^3} - x - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking the coefficients of the same terms common we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking ${x^6}$ common in the denominator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On taking ${x^3}$ common from numerator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^3}\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On simplifying we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
Now since it is given that $x \to - \infty \Rightarrow \dfrac{1}{x} = 0$
So all the values multiplied with $\dfrac{1}{x}$ in the denominator and numerator will be zero and for the limit to be finite as x tends to infinite the quantity $a - 2 = 0$ $ \Rightarrow a = 2$ .So the limit will only exist for $b - 1$
Then on putting the values we get,
$ \Rightarrow \dfrac{{\left[ {\left( {b - 1} \right)} \right]}}{{\left( {\sqrt 1 + \sqrt 1 } \right)}} = 2$
On simplifying we get,
$
\Rightarrow \dfrac{{b - 1}}{2} = 2 \\
\Rightarrow b - 1 = 4 \\
\Rightarrow b = 5 \\
$
So, only option C is correct.
Note: Here we rationalize the function to make it easier to solve the limit as the function gives indeterminate form on putting the limit. Indeterminate forms are such forms which cannot be determined so we try to find another method to change the indeterminate form. Here we have used rationalization. In some questions, we use L’ Hospital rule which states that the limit of derivative of the given function is equal to the limit of indeterminate form.
Complete step-by-step answer:
Given function is $\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right) = 2$
It is in $\infty - \infty $ indeterminate form. So we can solve it by rationalizing.
On rationalizing the given function we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} - \sqrt {{x^6} - 2{x^5} + {x^3} + 1} } \right) \times \left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$ We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ , On applying this in the above equation we get,
$ \Rightarrow $ \[\mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} } \right)}^2} - {{\left( {\sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}^2}} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2\]
On solving we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - \left( {{x^6} - 2{x^5} + {x^3} + x + 1} \right)}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On multiplying the negative sign inside the bracket,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^6} + a{x^5} + b{x^3} - cx + d - {x^6} + 2{x^5} - {x^3} - x - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking the coefficients of the same terms common we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{\left( {\sqrt {{x^6} + a{x^5} + b{x^3} - cx + d} + \sqrt {{x^6} - 2{x^5} + {x^3} + x + 1} } \right)}} = 2$
On taking ${x^6}$ common in the denominator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left( {a + 2} \right){x^5} + \left( {b - 1} \right){x^3} - \left( {c + 1} \right)x + d - 1}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On taking ${x^3}$ common from numerator we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^3}\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{{x^3}\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
On simplifying we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\left[ {\left( {a + 2} \right){x^2} + \left( {b - 1} \right) - \dfrac{{\left( {c + 1} \right)}}{{{x^2}}} + \dfrac{{d - 1}}{{{x^3}}}} \right]}}{{\left( {\sqrt {1 + \dfrac{a}{x} + \dfrac{b}{{{x^3}}} - \dfrac{c}{{{x^5}}} + \dfrac{d}{{{x^6}}}} + \sqrt {1 - \dfrac{2}{x} + \dfrac{1}{{{x^3}}} + \dfrac{1}{{{x^5}}} + \dfrac{1}{{{x^6}}}} } \right)}} = 2$
Now since it is given that $x \to - \infty \Rightarrow \dfrac{1}{x} = 0$
So all the values multiplied with $\dfrac{1}{x}$ in the denominator and numerator will be zero and for the limit to be finite as x tends to infinite the quantity $a - 2 = 0$ $ \Rightarrow a = 2$ .So the limit will only exist for $b - 1$
Then on putting the values we get,
$ \Rightarrow \dfrac{{\left[ {\left( {b - 1} \right)} \right]}}{{\left( {\sqrt 1 + \sqrt 1 } \right)}} = 2$
On simplifying we get,
$
\Rightarrow \dfrac{{b - 1}}{2} = 2 \\
\Rightarrow b - 1 = 4 \\
\Rightarrow b = 5 \\
$
So, only option C is correct.
Note: Here we rationalize the function to make it easier to solve the limit as the function gives indeterminate form on putting the limit. Indeterminate forms are such forms which cannot be determined so we try to find another method to change the indeterminate form. Here we have used rationalization. In some questions, we use L’ Hospital rule which states that the limit of derivative of the given function is equal to the limit of indeterminate form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE