
If $ n \geqslant 2$ then $3{C_1} - 4{C_2} + 5{C_3} - .......1{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n}$ is equal to
A.$ - 1$
B. 2
C.$ - 2$
D.1
Answer
493.5k+ views
Hint: We got the ${n^{th}}$ term as \[{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n}\] and the given series is
\[\dfrac{{i = n}}{{\dfrac{\sum }{{i = 2}}}}{\left( { - 1} \right)^{n - 1}}{\left( {i + 2} \right)^n}Ci\]
Divide the express into 2 and relate it with binomial expansion’s coefficient where $x = - 1$ for ${\left( {1 + x} \right)^n}$
Complete step-by-step answer:
Let’s begin with given expansion. It is
\[ \Rightarrow {3^n}{C_1} - {4^ n }{C_2} + {5^n}{C_3} - ........ + {\left( { - 1} \right)^{n - 1}}{\left( {n + 2} \right)^n}{C_ n}\]
So we can take ${n^{th}}$ term as
$ \Rightarrow {\left( { - 1} \right)^{r - 1}}\left( {r + 2} \right){\;^n}{C_r}$
Hence, series can also be written as
$\dfrac{n}{{\dfrac{\sum }{{r = 1}}}}{\left( { - 1} \right)^{n - 1}}\left( {r + 2} \right){\;^n}{C_r}$ $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}\left[ {{{\left( { - 1} \right)}^{r - 1}}r{\;^n}{C_r} + {{\left( { - 1} \right)}^{r - 1}}2.\;2{\;^n}{C_r}} \right]$
So we can divide the expression into Z. where $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}r.{\;^n}{C_r}\;\;\;\& \,2.\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\;^n}{C_r}$
First, I would like to solve $\dfrac{{\dfrac{n}{\sum }}}{{i = 1}}{\left( { - 1} \right)^r}\;r{\;^n}{c_r}$. By observing the equation formation. Each of the values having term r as a multiple is quite different from a regular expression. It can be obtained on a regular basis , if the variable is differentiator.
As we know that binomial expansion of
${\left( {1 + x} \right)^ n }{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ......{ + ^n}{C_n}{x^n}$
If we differentiate both the side, we get $w.r.t\;x$
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = 0{ + ^n}{C_1}{ + ^n}{C_2}.2x{ + ^n}{C_3}.3{x^{^2}} + {.....^n}{C_n} * n.{x^{n - 1}}\]
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}}{ = ^n}{C_1} + {2^n}.{C_2}x + {3.^n}{C_3}.{x^2} + ...... - 1n{.^n}{C_n}.{x^{n - 1}}\]
To obtain the relation with $\left( { - 1} \right)$ in each term we can use $x = - 1.$ so we get.
$ \Rightarrow n{\left( {1 - 1} \right)^{n - 1}} = 0{ + ^n}{C_1} + {2.^n}{C_2}\left( { - 1} \right) + {3.^n}{C_3}{\left( { - 1} \right)^2} + ...... + n{.^n}{C_n}\left( { - 1} \right)$
$ \Rightarrow 0 = 0{ + ^n}{C_1} - {2.^C}{n_2} + {3.^n}{C_3} - {4.^n}{C_4}......$
Hence. We got
$\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r = 1}}r{.^n}{C_r} = 0$ ①
Now, let’s compute
\[\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^x}{C_r},\]
Which can be computed from Coefficient of ${\left( {1 + x} \right)^ n }$ Binomial expansion will be
${\left( {1 + x} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_n}{x^n}$
If if need the expression in the form
\[\left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + .........} \right]\]
We need to put a Value of $x = - 1$ . Therefore the equation will give
$ \Rightarrow {\left( {1 - 1} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}\left( { - 1} \right){ + ^n}{C_2}{\left( { - 1} \right)^2} + ........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
$ \Rightarrow 0{ = ^n}{C_0}{ - ^n}{C_1}{ + ^n}{C_2}{ - ^n}{C_3} + .........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
If we compare, the equation resulted in
$ \Rightarrow 0{ = ^n}{C_0} - \left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + ...... + {{\left( { - 1} \right)}^{n - 1}}^n{C_n}} \right]$
${ = ^n}{C_0} - \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Therefore, $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r}{ = ^n}{C_0} = 1$
We required $2 \times \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r} = 2 \times \left( 1 \right) = 2$ (2)
Hence we got both the value. So the equation given
$ \Rightarrow \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}{\left( {r + 1} \right)^n}{C_r} + 2\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Using (1) and (2) we got
$ \Rightarrow 0 + 2\left( 1 \right)$
$ = 2$
Hence, option B is the correct answer.
Note: If we get into any binomial form of expression. It will be anyhow, the form of Binomial Expression for any short Expression. Binomial Properties are used to shorten the calculation like.
${ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}$
\[\dfrac{{i = n}}{{\dfrac{\sum }{{i = 2}}}}{\left( { - 1} \right)^{n - 1}}{\left( {i + 2} \right)^n}Ci\]
Divide the express into 2 and relate it with binomial expansion’s coefficient where $x = - 1$ for ${\left( {1 + x} \right)^n}$
Complete step-by-step answer:
Let’s begin with given expansion. It is
\[ \Rightarrow {3^n}{C_1} - {4^ n }{C_2} + {5^n}{C_3} - ........ + {\left( { - 1} \right)^{n - 1}}{\left( {n + 2} \right)^n}{C_ n}\]
So we can take ${n^{th}}$ term as
$ \Rightarrow {\left( { - 1} \right)^{r - 1}}\left( {r + 2} \right){\;^n}{C_r}$
Hence, series can also be written as
$\dfrac{n}{{\dfrac{\sum }{{r = 1}}}}{\left( { - 1} \right)^{n - 1}}\left( {r + 2} \right){\;^n}{C_r}$ $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}\left[ {{{\left( { - 1} \right)}^{r - 1}}r{\;^n}{C_r} + {{\left( { - 1} \right)}^{r - 1}}2.\;2{\;^n}{C_r}} \right]$
So we can divide the expression into Z. where $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}r.{\;^n}{C_r}\;\;\;\& \,2.\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\;^n}{C_r}$
First, I would like to solve $\dfrac{{\dfrac{n}{\sum }}}{{i = 1}}{\left( { - 1} \right)^r}\;r{\;^n}{c_r}$. By observing the equation formation. Each of the values having term r as a multiple is quite different from a regular expression. It can be obtained on a regular basis , if the variable is differentiator.
As we know that binomial expansion of
${\left( {1 + x} \right)^ n }{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ......{ + ^n}{C_n}{x^n}$
If we differentiate both the side, we get $w.r.t\;x$
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = 0{ + ^n}{C_1}{ + ^n}{C_2}.2x{ + ^n}{C_3}.3{x^{^2}} + {.....^n}{C_n} * n.{x^{n - 1}}\]
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}}{ = ^n}{C_1} + {2^n}.{C_2}x + {3.^n}{C_3}.{x^2} + ...... - 1n{.^n}{C_n}.{x^{n - 1}}\]
To obtain the relation with $\left( { - 1} \right)$ in each term we can use $x = - 1.$ so we get.
$ \Rightarrow n{\left( {1 - 1} \right)^{n - 1}} = 0{ + ^n}{C_1} + {2.^n}{C_2}\left( { - 1} \right) + {3.^n}{C_3}{\left( { - 1} \right)^2} + ...... + n{.^n}{C_n}\left( { - 1} \right)$
$ \Rightarrow 0 = 0{ + ^n}{C_1} - {2.^C}{n_2} + {3.^n}{C_3} - {4.^n}{C_4}......$
Hence. We got
$\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r = 1}}r{.^n}{C_r} = 0$ ①
Now, let’s compute
\[\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^x}{C_r},\]
Which can be computed from Coefficient of ${\left( {1 + x} \right)^ n }$ Binomial expansion will be
${\left( {1 + x} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_n}{x^n}$
If if need the expression in the form
\[\left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + .........} \right]\]
We need to put a Value of $x = - 1$ . Therefore the equation will give
$ \Rightarrow {\left( {1 - 1} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}\left( { - 1} \right){ + ^n}{C_2}{\left( { - 1} \right)^2} + ........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
$ \Rightarrow 0{ = ^n}{C_0}{ - ^n}{C_1}{ + ^n}{C_2}{ - ^n}{C_3} + .........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
If we compare, the equation resulted in
$ \Rightarrow 0{ = ^n}{C_0} - \left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + ...... + {{\left( { - 1} \right)}^{n - 1}}^n{C_n}} \right]$
${ = ^n}{C_0} - \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Therefore, $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r}{ = ^n}{C_0} = 1$
We required $2 \times \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r} = 2 \times \left( 1 \right) = 2$ (2)
Hence we got both the value. So the equation given
$ \Rightarrow \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}{\left( {r + 1} \right)^n}{C_r} + 2\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Using (1) and (2) we got
$ \Rightarrow 0 + 2\left( 1 \right)$
$ = 2$
Hence, option B is the correct answer.
Note: If we get into any binomial form of expression. It will be anyhow, the form of Binomial Expression for any short Expression. Binomial Properties are used to shorten the calculation like.
${ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
