Answer
Verified
497.4k+ views
Hint: In this question, we will use the property of the cube root of unity to solve the given determinant. it is given that $\omega $ is a cube root of unity. The value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$. Now we will use the property which is $1 + \omega + {\omega ^2}{\text{ = 0}}$. We will use this property in expanding the determinant.
Complete step-by-step answer:
Now, performing the operation ${{\text{C}}_1} \to {{\text{C}}_1} + {{\text{C}}_2}$ on column \[{{\text{C}}_1}\].
Therefore,
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
{1 + \omega + {\omega ^2}}&{{\omega ^2}}&\omega \\
{{\omega ^2} + \omega - \omega }&{ - \omega }&{{\omega ^2}} \\
{1 + {\omega ^2} + \omega }&\omega &{{\omega ^2}}
\end{array}} \right|$
Using the property $1 + \omega + {\omega ^2}{\text{ = 0}}$, we get
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
0&{{\omega ^2}}&\omega \\
{{\omega ^2}}&{ - \omega }&{{\omega ^2}} \\
0&\omega &{{\omega ^2}}
\end{array}} \right|$
Taking ${\omega ^2}$ common from column \[{{\text{C}}_1}\] and $\omega $ from both the column \[{{\text{C}}_2}\] and \[{{\text{C}}_3}\], we get
$\vartriangle {\text{ = }}{\omega ^4}\left| {\begin{array}{*{20}{c}}
0&\omega &1 \\
1&{ - 1}&\omega \\
0&1&\omega
\end{array}} \right|$
Expanding the determinant through column \[{{\text{C}}_1}\].
$\vartriangle {\text{ = }}{\omega ^4}\{ 0\left| {\begin{array}{*{20}{c}}
{ - 1}&\omega \\
1&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
\omega &1 \\
1&\omega
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
\omega &1 \\
{ - 1}&\omega
\end{array}} \right|\} $
$\vartriangle {\text{ = }}{\omega ^4}\{ 0 - 1({\omega ^2} - 1) + 0\} $
$\vartriangle {\text{ = - }}{\omega ^4}({\omega ^2} - 1)$
Now the value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ . So, we can see that the value of ${\omega ^3}$ = 1.
Therefore,
$\vartriangle {\text{ = - }}\omega ({\omega ^2} - 1) = {\text{ - (}}{\omega ^3} - \omega )$
$\vartriangle {\text{ = - (1 - }}\omega {\text{) = - 1 + }}\omega $
So, the answer is ${\text{ - 1 + }}\omega $ i.e. option (A).
Note: While solving such problems which have a cube root of unity, always apply the properties of the cube root to easily solve the given problem. If instead properties value of cube root is used it will also lead you to the correct answer but the process is very lengthy. Also, simplify the determinant by using properties of determinant before expanding it.
Complete step-by-step answer:
Now, performing the operation ${{\text{C}}_1} \to {{\text{C}}_1} + {{\text{C}}_2}$ on column \[{{\text{C}}_1}\].
Therefore,
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
{1 + \omega + {\omega ^2}}&{{\omega ^2}}&\omega \\
{{\omega ^2} + \omega - \omega }&{ - \omega }&{{\omega ^2}} \\
{1 + {\omega ^2} + \omega }&\omega &{{\omega ^2}}
\end{array}} \right|$
Using the property $1 + \omega + {\omega ^2}{\text{ = 0}}$, we get
$\vartriangle {\text{ = }}\left| {\begin{array}{*{20}{c}}
0&{{\omega ^2}}&\omega \\
{{\omega ^2}}&{ - \omega }&{{\omega ^2}} \\
0&\omega &{{\omega ^2}}
\end{array}} \right|$
Taking ${\omega ^2}$ common from column \[{{\text{C}}_1}\] and $\omega $ from both the column \[{{\text{C}}_2}\] and \[{{\text{C}}_3}\], we get
$\vartriangle {\text{ = }}{\omega ^4}\left| {\begin{array}{*{20}{c}}
0&\omega &1 \\
1&{ - 1}&\omega \\
0&1&\omega
\end{array}} \right|$
Expanding the determinant through column \[{{\text{C}}_1}\].
$\vartriangle {\text{ = }}{\omega ^4}\{ 0\left| {\begin{array}{*{20}{c}}
{ - 1}&\omega \\
1&\omega
\end{array}} \right| - 1\left| {\begin{array}{*{20}{c}}
\omega &1 \\
1&\omega
\end{array}} \right| + 0\left| {\begin{array}{*{20}{c}}
\omega &1 \\
{ - 1}&\omega
\end{array}} \right|\} $
$\vartriangle {\text{ = }}{\omega ^4}\{ 0 - 1({\omega ^2} - 1) + 0\} $
$\vartriangle {\text{ = - }}{\omega ^4}({\omega ^2} - 1)$
Now the value of $\omega $ = $\dfrac{{ - 1 + \sqrt 3 i}}{2}$ . So, we can see that the value of ${\omega ^3}$ = 1.
Therefore,
$\vartriangle {\text{ = - }}\omega ({\omega ^2} - 1) = {\text{ - (}}{\omega ^3} - \omega )$
$\vartriangle {\text{ = - (1 - }}\omega {\text{) = - 1 + }}\omega $
So, the answer is ${\text{ - 1 + }}\omega $ i.e. option (A).
Note: While solving such problems which have a cube root of unity, always apply the properties of the cube root to easily solve the given problem. If instead properties value of cube root is used it will also lead you to the correct answer but the process is very lengthy. Also, simplify the determinant by using properties of determinant before expanding it.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE