If one root of the quadratic equation \[2{{x}^{2}}+px-4=0\] is ‘2’, then find the value of ‘p’ will be:
a)-3
b)-2
c)2
d3
Answer
Verified
504.3k+ views
Hint: To solve the question, we have to apply the sum and product of roots of quadratic equations formulae and calculate the unknown values.
Complete step-by-step answer:
Given
The quadratic equation is \[2{{x}^{2}}+px-4=0\].
The root of the quadratic equation is given as 2.
Let the other root of the quadratic equation be y.
We know that the formula of the sum of roots of a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{-b}{a}\] and the formula of the product of roots is equal to \[\dfrac{c}{a}\].
By comparing the general quadratic equation with our quadratic equation, we get
a = 2, b = p, c = -4.
The sum of roots of the equation will become\[\dfrac{-p}{2}\]
\[2+y=\dfrac{-p}{2}\]
\[\Rightarrow y=\dfrac{-p}{2}-2\] ……\[(1)\]
The product of roots of the equation\[=\dfrac{-4}{2}=-2\]
\[2y=-2\]
\[\Rightarrow y=-1\]
By substituting the above value in equation (1), we get
\[-1=\dfrac{-p}{2}-2\]
\[1=\dfrac{-p}{2}\]
\[\Rightarrow p=-2\]
The value of p is equal to -2
Hence, the option (b) is the right choice.
Note: The possibility of mistake can be found at the application of the formulae for the sum and the product of the roots of the quadratic equation. The possibility of mistake is calculations as mistakes are possible because of various positive and negative values. The alternative method is by substituting x = 2 in the given quadratic equation and by solving the equation we can find the value of p. The other alternative method of solving can be using the hit-trial method, substitute the options in the given quadratic equation and check whether the root x = 2 can satisfy or not.
Complete step-by-step answer:
Given
The quadratic equation is \[2{{x}^{2}}+px-4=0\].
The root of the quadratic equation is given as 2.
Let the other root of the quadratic equation be y.
We know that the formula of the sum of roots of a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is equal to \[\dfrac{-b}{a}\] and the formula of the product of roots is equal to \[\dfrac{c}{a}\].
By comparing the general quadratic equation with our quadratic equation, we get
a = 2, b = p, c = -4.
The sum of roots of the equation will become\[\dfrac{-p}{2}\]
\[2+y=\dfrac{-p}{2}\]
\[\Rightarrow y=\dfrac{-p}{2}-2\] ……\[(1)\]
The product of roots of the equation\[=\dfrac{-4}{2}=-2\]
\[2y=-2\]
\[\Rightarrow y=-1\]
By substituting the above value in equation (1), we get
\[-1=\dfrac{-p}{2}-2\]
\[1=\dfrac{-p}{2}\]
\[\Rightarrow p=-2\]
The value of p is equal to -2
Hence, the option (b) is the right choice.
Note: The possibility of mistake can be found at the application of the formulae for the sum and the product of the roots of the quadratic equation. The possibility of mistake is calculations as mistakes are possible because of various positive and negative values. The alternative method is by substituting x = 2 in the given quadratic equation and by solving the equation we can find the value of p. The other alternative method of solving can be using the hit-trial method, substitute the options in the given quadratic equation and check whether the root x = 2 can satisfy or not.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE