Answer
Verified
441.3k+ views
Hint: Here we will apply the Bohr quantization condition. The value of $ vr $ can be calculated from here.
The magnetic Lorentz force provides the necessary centripetal force. From here, value of $ \dfrac{v}{r} $ can be calculated
By multiplying these two values found, we can find the value of $ {{v}^{2}} $ and hence kinetic energy using the formula $ \dfrac{1}{2}m{{v}^{2}} $.
Complete step by step solution
Bohr’s quantization condition states that angular momentum of an electron is an integral multiple of $ \dfrac{h}{2\pi } $
$ \text{L=}\dfrac{n\text{ }h}{2\pi } $
As $ \alpha =mvr $ , so
$ mvr=\dfrac{nh}{2\pi } $
$ vr=\dfrac{nh}{2\pi m} $ …… …… …… (1)
Now, the magnetic Lorentz force provides the necessary centripetal force.
So, $ \dfrac{m{{v}^{2}}}{r}=qvB $
On rearranging, we get
$ \dfrac{v}{r}=\dfrac{qB}{m} $ …… …… …… (2)
On multiplying equations (1) and (2) we get
$ vr\times \dfrac{v}{r}=\left( \dfrac{nh}{2\pi m} \right)\times \left( \dfrac{qB}{m} \right) $
$ {{v}^{2}}=\dfrac{n\text{ }h\ q\text{ }B}{2\pi \text{ }{{m}^{2}}} $
Now energy of the charged particle is given by:
K.E $ =\dfrac{1}{2}m{{v}^{2}} $
$ =\dfrac{1}{2}m\left( \dfrac{n\text{ }h\text{ }q\text{ }B}{2\pi {{m}^{2}}} \right) $
$ \text{E=n}\left( \dfrac{hqB}{4\pi m} \right) $.
Correct option is (A).
Note
Lorentz force is the force exerted on a charged particle q moving with velocity v through an electric field E and moving magnetic field B.
The entire electromagnetic force F on the charged particle is called the Lorentz force and is given by
$ \text{F=}qE+qv\times B $
The first term is contributed by the electric field. The second term is the magnetic field. The second term is the magnetic field and has a direction perpendicular to both the velocity and the magnetic field.
The magnetic Lorentz force provides the necessary centripetal force. From here, value of $ \dfrac{v}{r} $ can be calculated
By multiplying these two values found, we can find the value of $ {{v}^{2}} $ and hence kinetic energy using the formula $ \dfrac{1}{2}m{{v}^{2}} $.
Complete step by step solution
Bohr’s quantization condition states that angular momentum of an electron is an integral multiple of $ \dfrac{h}{2\pi } $
$ \text{L=}\dfrac{n\text{ }h}{2\pi } $
As $ \alpha =mvr $ , so
$ mvr=\dfrac{nh}{2\pi } $
$ vr=\dfrac{nh}{2\pi m} $ …… …… …… (1)
Now, the magnetic Lorentz force provides the necessary centripetal force.
So, $ \dfrac{m{{v}^{2}}}{r}=qvB $
On rearranging, we get
$ \dfrac{v}{r}=\dfrac{qB}{m} $ …… …… …… (2)
On multiplying equations (1) and (2) we get
$ vr\times \dfrac{v}{r}=\left( \dfrac{nh}{2\pi m} \right)\times \left( \dfrac{qB}{m} \right) $
$ {{v}^{2}}=\dfrac{n\text{ }h\ q\text{ }B}{2\pi \text{ }{{m}^{2}}} $
Now energy of the charged particle is given by:
K.E $ =\dfrac{1}{2}m{{v}^{2}} $
$ =\dfrac{1}{2}m\left( \dfrac{n\text{ }h\text{ }q\text{ }B}{2\pi {{m}^{2}}} \right) $
$ \text{E=n}\left( \dfrac{hqB}{4\pi m} \right) $.
Correct option is (A).
Note
Lorentz force is the force exerted on a charged particle q moving with velocity v through an electric field E and moving magnetic field B.
The entire electromagnetic force F on the charged particle is called the Lorentz force and is given by
$ \text{F=}qE+qv\times B $
The first term is contributed by the electric field. The second term is the magnetic field. The second term is the magnetic field and has a direction perpendicular to both the velocity and the magnetic field.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE