If \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system and\[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\], then find the value of\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]
A. \[24\]
B. \[ - 24\]
C. \[12\]
D. \[ - 12\]
Answer
Verified
481.5k+ views
Hint: Initially, we will find the magnitude of each vector. Then using some formulas which are mentioned below, we will find our required answer.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE