Answer
Verified
396k+ views
Hint: Using the given equation, we must find the values of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and $\overrightarrow{a}\cdot \overrightarrow{c}$. Then, with the help of these values, and the expansion of scalar triple product as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$, we can find the value of this triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE