
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are two, unit vectors such that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$, such that $\left| \overrightarrow{c} \right|=2$, then find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is
(a) 0
(b) $\pm 1$
(c) 3
(d) -3
Answer
504.9k+ views
Hint: Using the given equation, we must find the values of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ and $\overrightarrow{a}\cdot \overrightarrow{c}$. Then, with the help of these values, and the expansion of scalar triple product as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$, we can find the value of this triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Complete step-by-step solution:
Here, we are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$.
Let us subtract $\overrightarrow{a}$ from both sides of the above equation. Hence, we write
$\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)-\overrightarrow{a}=\overrightarrow{c}-\overrightarrow{a}$.
Thus, we can also write the above equation as $\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}-\overrightarrow{a}...\left( i \right)$
We need to find the value of $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$. We know that $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ is the scalar triple product of $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$, and this scalar triple product is defined as $\overrightarrow{a}\cdot \left( \overrightarrow{b}\times \overrightarrow{c} \right)$ or $\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$.
Thus, we can write this mathematically, as
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}$
Using the value of $\left( \overrightarrow{a}\times \overrightarrow{b} \right)$ from equation (i), we can write,
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{c}-\overrightarrow{a} \right)\cdot \overrightarrow{c}$
We know that the dot product is distributive. Hence, using the distributive property, we can write
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=\overrightarrow{c}\cdot \overrightarrow{c}-\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left| \overrightarrow{c} \right|}^{2}}-\overrightarrow{a}\cdot \overrightarrow{c}...\left( ii \right)$
Now, we need to find the value of $\overrightarrow{a}\cdot \overrightarrow{c}$.
We are given that $\overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{c}$. Hence, we can also write
$\overrightarrow{a}\cdot \left\{ \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{b} \right) \right\}=\overrightarrow{a}\cdot \overrightarrow{c}$
Again, using the distributive property, we can write
$\overrightarrow{a}\cdot \overrightarrow{a}+\overrightarrow{a}\cdot \left( \overrightarrow{a}\times \overrightarrow{b} \right)=\overrightarrow{a}\cdot \overrightarrow{c}$
Thus, we have
${{\left| \overrightarrow{a} \right|}^{2}}+\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=\overrightarrow{a}\cdot \overrightarrow{c}$
We know that if any two vectors in the scalar triple product are the same, then its value becomes 0. Thus, we have
$1+0=\overrightarrow{a}\cdot \overrightarrow{c}$
Hence, $\overrightarrow{a}\cdot \overrightarrow{c}=1$.
Using the above value in equation (ii), we get
$\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]={{\left( 2 \right)}^{2}}-1$
And so, $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]=3$.
Hence, option (c) is the correct answer.
Note: We can see that $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$ can be expressed as $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c} \right]=\left( \overrightarrow{a}\times \overrightarrow{a} \right)\cdot \overrightarrow{c}$, and since $\left( \overrightarrow{a}\times \overrightarrow{a} \right)=0$, we can write $\left[ \overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]=0$. We must, also, remember that the scalar triple product $\left[ \overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c} \right]$ can be expressed in multiple forms, like $\left[ \overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a} \right]$ and $\left[ \overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b} \right]$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

