If \[\overrightarrow{a}\] is a non- zero vector of modulus a and m is a non-zero scalar, then \[m\overrightarrow{a}\] is a unit vector if
Answer
Verified
407.4k+ views
Hint: According to Newton’s second law of motion force is the product of mass and acceleration. Since the product m and a are unity. By rearranging them we will get the relation connecting m and \[\overrightarrow{a}\]. When we multiply a scalar with a vector quantity the resultant quantity will be a vector.
Complete step-by-step solution:
If we multiply a scalar with a vector quantity the resultant quantity will be a vector. Here the scalar quantity is mass and acceleration is a vector quantity. Here the vector quantity is called force.
Given that \[\overrightarrow{a}\] is a non- zero vector of modulus a and m is a non-zero scalar. Also given that product of m and a is unity. That is,
\[\left| m\overrightarrow{a} \right|=1\]
The product of mass and acceleration \[m\overrightarrow{a}\]is a unit vector only if,
\[m=\dfrac{1}{\left| \overrightarrow{a} \right|}\]
Here m becomes the reciprocal of \[\overrightarrow{a}\].
Where, \[\overrightarrow{a}\] is a non- zero vector of modulus a and m is a non-zero scalar.
Thus the answer is \[m=\dfrac{1}{\left| \overrightarrow{a} \right|}\].
Note: If we multiply a scalar with a vector quantity the resultant quantity will be a vector. Here the scalar quantity is mass and acceleration is a vector quantity. So while taking the product of those two quantities the resultant quantity is a vector. Here the vector quantity is called force. That is the product of mass and acceleration gives the force which is Newton’s second law of motion. Here the force will be unity only if m becomes the reciprocal \[\overrightarrow{a}\].
Complete step-by-step solution:
If we multiply a scalar with a vector quantity the resultant quantity will be a vector. Here the scalar quantity is mass and acceleration is a vector quantity. Here the vector quantity is called force.
Given that \[\overrightarrow{a}\] is a non- zero vector of modulus a and m is a non-zero scalar. Also given that product of m and a is unity. That is,
\[\left| m\overrightarrow{a} \right|=1\]
The product of mass and acceleration \[m\overrightarrow{a}\]is a unit vector only if,
\[m=\dfrac{1}{\left| \overrightarrow{a} \right|}\]
Here m becomes the reciprocal of \[\overrightarrow{a}\].
Where, \[\overrightarrow{a}\] is a non- zero vector of modulus a and m is a non-zero scalar.
Thus the answer is \[m=\dfrac{1}{\left| \overrightarrow{a} \right|}\].
Note: If we multiply a scalar with a vector quantity the resultant quantity will be a vector. Here the scalar quantity is mass and acceleration is a vector quantity. So while taking the product of those two quantities the resultant quantity is a vector. Here the vector quantity is called force. That is the product of mass and acceleration gives the force which is Newton’s second law of motion. Here the force will be unity only if m becomes the reciprocal \[\overrightarrow{a}\].
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE