Answer
Verified
441.3k+ views
Hint:
Here in this question we will first find the value of \[p\left( { - x} \right)\] by replacing the value of \[x\] by \[ - x\] in the given function. Then we will add the given function and the obtained function to get the required value of \[p\left( x \right) + p\left( { - x} \right)\].
Complete step by step solution:
Given function is \[p\left( x \right) = x + 9\]…………………. \[\left( 1 \right)\]
Now we will find the value of \[p\left( { - x} \right)\] by substituting the value of \[x\] as \[ - x\] in the given function to get the value of \[p\left( { - x} \right)\]. Therefore, we get
\[ \Rightarrow p\left( { - x} \right) = - x + 9\]…………………. \[\left( 2 \right)\]
Now we will add the equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\] to get the value of \[p\left( x \right) + p\left( { - x} \right)\]. Therefore, we get
\[p\left( x \right) + p\left( { - x} \right) = \left( {x + 9} \right) + \left( { - x + 9} \right)\]
Opening the bracket, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = x + 9 - x + 9\]
Adding and subtracting the like terms, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = 18\]
Hence the value of \[p\left( x \right) + p\left( { - x} \right)\] is equal to 18.
Additional Information:
Here, the equation given in the question is the linear equation as in this the highest exponent of the variable \[x\] is one. A linear equation has only one solution. For any equation, numbers of roots are always equal to the value of the highest exponent of the variable. Other than linear equations, there are many types of equations such as quadratic equation, cubic equation. Quadratic equation is an equation which has a highest degree of 2. Cubic equation is an equation which has a highest degree of variable as 3.
Note:
Here we might make a mistake by changing the sign of 9 in the equation while finding \[p\left( { - x} \right)\]. Here we just have to replace \[x\] by \[ - x\] and not change the value of the variable and constant. We can also make a mistake that instead of adding \[p\left( { - x} \right)\] and \[p\left( x \right)\] we might subtract them and get the answer as \[2x\], which is incorrect.
Here in this question we will first find the value of \[p\left( { - x} \right)\] by replacing the value of \[x\] by \[ - x\] in the given function. Then we will add the given function and the obtained function to get the required value of \[p\left( x \right) + p\left( { - x} \right)\].
Complete step by step solution:
Given function is \[p\left( x \right) = x + 9\]…………………. \[\left( 1 \right)\]
Now we will find the value of \[p\left( { - x} \right)\] by substituting the value of \[x\] as \[ - x\] in the given function to get the value of \[p\left( { - x} \right)\]. Therefore, we get
\[ \Rightarrow p\left( { - x} \right) = - x + 9\]…………………. \[\left( 2 \right)\]
Now we will add the equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\] to get the value of \[p\left( x \right) + p\left( { - x} \right)\]. Therefore, we get
\[p\left( x \right) + p\left( { - x} \right) = \left( {x + 9} \right) + \left( { - x + 9} \right)\]
Opening the bracket, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = x + 9 - x + 9\]
Adding and subtracting the like terms, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = 18\]
Hence the value of \[p\left( x \right) + p\left( { - x} \right)\] is equal to 18.
Additional Information:
Here, the equation given in the question is the linear equation as in this the highest exponent of the variable \[x\] is one. A linear equation has only one solution. For any equation, numbers of roots are always equal to the value of the highest exponent of the variable. Other than linear equations, there are many types of equations such as quadratic equation, cubic equation. Quadratic equation is an equation which has a highest degree of 2. Cubic equation is an equation which has a highest degree of variable as 3.
Note:
Here we might make a mistake by changing the sign of 9 in the equation while finding \[p\left( { - x} \right)\]. Here we just have to replace \[x\] by \[ - x\] and not change the value of the variable and constant. We can also make a mistake that instead of adding \[p\left( { - x} \right)\] and \[p\left( x \right)\] we might subtract them and get the answer as \[2x\], which is incorrect.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers