Answer
Verified
497.7k+ views
Hint: Here, we will solve the given problem by considering each statements truth value and verify which compound statement is T i.e., Tautology.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE