Answer
Verified
468.6k+ views
Hint: In this question take a series whose terms are in geometric progression that is $a,ar,a{r^2},a{r^3},..................,a{r^{n - 1}}$. Find the sum of the series using direct formula for the sum of n terms of G.P $S = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$, then find the product of the terms of this series and then sum of reciprocal, to prove the required.
Complete step by step solution:
Note: A series is said to be in G.P if the common ratio that is the ratio of any two consecutive terms of that series remains constant. It is always advised to remember the direct formula of some frequently used series like G.P and A.P, as it helps save a lot of time.
Complete step by step solution:
Let the (n) terms G.P be,
$a,ar,a{r^2},a{r^3},..................,a{r^{n - 1}}$ Where (a) is the first term and (r) is the common ratio.
Now it is given that s is the sum of (n) terms of a G.P
$ \Rightarrow S = a + ar + a{r^2} + a{r^3} + .................. + a{r^{n - 1}}$
Now as we know that the sum of (n) terms of a G.P is
$ \Rightarrow S = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$ ........................................ (A)
Now take nth power on both sides we have,
$ \Rightarrow {S^n} = {\left( {a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}} \right)^n} = {a^n}\dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$ ................................. (1)
Now it is given that P is the product of (n) terms of a G.P
$ \Rightarrow P = a \times ar \times a{r^2} \times a{r^3} \times .................. \times a{r^{n - 1}}$
Now as we see that (a) is multiplied by (n) times therefore
$ \Rightarrow P = {a^n}\left( {1 \times r \times {r^2} \times {r^3} \times .................. \times {r^{n - 1}}} \right)$
Now as we see that base (r) is same so powers of (r) are all added up therefore.
$ \Rightarrow P = {a^n}\left( {{r^{1 + 2 + 3 + 4 + ........... + \left( {n - 1} \right)}}} \right)$
Now add and subtract by (n) in power of (r) we have,
$ \Rightarrow P = {a^n}\left( {{r^{1 + 2 + 3 + 4 + ........... + \left( {n - 1} \right) + n - n}}} \right)$
Now as we know that sum of first natural number (i.e. 1 +2 +3 +4 +.................+ n) = $\dfrac{{n\left( {n + 1} \right)}}{2}$ so substitute this value in above equation we have,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{n\left( {n + 1} \right)}}{2} - n}}} \right)$
Now simplify the above equation we have,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{n\left( {n + 1} \right) - 2n}}{2}}}} \right) = {a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)$
Now squaring on both sides we have,
$ \Rightarrow {P^2} = {\left( {{a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)} \right)^2} = {a^{2n}}{r^{n\left( {n - 1} \right)}}$......................... (2)
Now it is also given that sum of reciprocal of (n) terms in a G.P is R therefore we have,
$ \Rightarrow R = \dfrac{1}{a} + \dfrac{1}{{ar}} + \dfrac{1}{{a{r^2}}} + .................. + \dfrac{1}{{a{r^{n - 1}}}}$
Now from equation (A) replace (a) with (1/a) and replace (r) with (1/r) we have,
$ \Rightarrow R = \dfrac{1}{a}\dfrac{{\left( {{{\left( {\dfrac{1}{r}} \right)}^n} - 1} \right)}}{{\left( {\dfrac{1}{r} - 1} \right)}}$
$ \Rightarrow R = \dfrac{1}{a}\dfrac{{\left( {1 - {{\left( {\dfrac{1}{r}} \right)}^n}} \right)}}{{\left( {1 - \dfrac{1}{r}} \right)}} = \dfrac{1}{a}\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}\dfrac{r}{{{r^n}}} = \dfrac{1}{a}\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}\dfrac{1}{{{r^{n - 1}}}}$
Now take nth power of R we have,
\[ \Rightarrow {R^n} = {\left( {\dfrac{1}{a}\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}\dfrac{1}{{{r^{n - 1}}}}} \right)^n}\]
Now simplify the above equation we have,
$ \Rightarrow {R^n} = \dfrac{1}{{{a^n}}}\dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}{\left( {\dfrac{1}{{{r^{n - 1}}}}} \right)^n} = \dfrac{1}{{{a^n}}}\dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}\dfrac{1}{{{r^{n\left( {n - 1} \right)}}}}$............... (3)
Now multiply equation (2) and (3) together we have,
$ \Rightarrow {P^2} \times {R^n} = {a^{2n}}{r^{n\left( {n - 1} \right)}} \times \dfrac{1}{{{a^n}}}\dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}\dfrac{1}{{{r^{n\left( {n - 1} \right)}}}}$
Now simplify the above equation we have,
$ \Rightarrow {P^2} \times {R^n} = {a^n} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$
Now from equation (1) we have,
$ \Rightarrow {P^2} \times {R^n} = {a^n} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}} = {S^n}$
$ \Rightarrow {P^2} \times {R^n} = {S^n}$
Hence Proved.
\[{\text{Hence it's proved that, }}{p^2}{\text{ }} = {\text{ }}{\left( {\dfrac{S}{R}} \right)^n}\]Note: A series is said to be in G.P if the common ratio that is the ratio of any two consecutive terms of that series remains constant. It is always advised to remember the direct formula of some frequently used series like G.P and A.P, as it helps save a lot of time.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE