If $ \sin 4A = \cos (A - {20^ \circ }) $ , where 4A is an acute angle, Find the value of A in degrees.
Answer
Verified
455.1k+ views
Hint: This sum is from the chapter trigonometric functions. Though this sum may seem complicated with the use of words like acute angle , $ \sin 4A $ ,it is very easy if you know how to break down these trigonometric functions. This sum involves only one step where you need to convert $ \sin \theta $ to $ \cos \theta $ . For this it is very important to know the relationship between $ \sin \theta $ & $ \cos \theta $ . Also it is necessary to know all the identities pertaining to trigonometric functions.
Complete step-by-step answer:
Given that $ 4A $ is an acute angle, an acute angle is an angle which measures less than $ {90^ \circ } $ .
Since it is given that $ 4A $ is acute angle, that means $ A $ is also an acute angle.
We will have to use $ \sin \theta = \cos (90 - \theta ) $ for this particular problem.
$ \Rightarrow \sin 4A = \cos (90 - 4A).......(1) $
We can now substitute value of $ Equation1 $ in the given problem in order to find the value of $ A $
$ \Rightarrow \cos ({90^ \circ } - 4A) = \cos (A - {20^0}).......(2) $
Since both the LHS & RHS are terms having $ \cos () $ we can equate the values inside the bracket directly to find the value of $ A $ .
\[ \Rightarrow {90^ \circ } - 4A = A - {20^0}.......(3)\]
\[ \Rightarrow 5A = {110^0}.......(4)\]
$ \Rightarrow A = {22^ \circ } $
Thus the value of $ A $ is $ {22^ \circ } $ . We can also say this answer is correct as the value of both $ 4A $ is less than $ {90^ \circ } $ and hence it is an acute angle.
So, the correct answer is “ $ A = {22^ \circ } $ ”.
Note: Though this sum looks easy, it wouldn’t have been possible to solve it, if the student was not aware about the relationship between $ \cos \theta $ & $ \sin \theta $ . For all the sums it is advisable to note down the identities and memories of them so that students are not stuck in any of the sums. All the sums involving trigonometric functions are just application of the identities and nothing else. So once the student is thorough with the identities he/she can easily solve the sum.
Complete step-by-step answer:
Given that $ 4A $ is an acute angle, an acute angle is an angle which measures less than $ {90^ \circ } $ .
Since it is given that $ 4A $ is acute angle, that means $ A $ is also an acute angle.
We will have to use $ \sin \theta = \cos (90 - \theta ) $ for this particular problem.
$ \Rightarrow \sin 4A = \cos (90 - 4A).......(1) $
We can now substitute value of $ Equation1 $ in the given problem in order to find the value of $ A $
$ \Rightarrow \cos ({90^ \circ } - 4A) = \cos (A - {20^0}).......(2) $
Since both the LHS & RHS are terms having $ \cos () $ we can equate the values inside the bracket directly to find the value of $ A $ .
\[ \Rightarrow {90^ \circ } - 4A = A - {20^0}.......(3)\]
\[ \Rightarrow 5A = {110^0}.......(4)\]
$ \Rightarrow A = {22^ \circ } $
Thus the value of $ A $ is $ {22^ \circ } $ . We can also say this answer is correct as the value of both $ 4A $ is less than $ {90^ \circ } $ and hence it is an acute angle.
So, the correct answer is “ $ A = {22^ \circ } $ ”.
Note: Though this sum looks easy, it wouldn’t have been possible to solve it, if the student was not aware about the relationship between $ \cos \theta $ & $ \sin \theta $ . For all the sums it is advisable to note down the identities and memories of them so that students are not stuck in any of the sums. All the sums involving trigonometric functions are just application of the identities and nothing else. So once the student is thorough with the identities he/she can easily solve the sum.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE