
If \[\sin \theta =3\sin \left( \theta +2\alpha \right),\] then the value of \[\tan \left( \theta +\alpha \right)+2\tan \alpha \] is:
A. 3
B. 2
C. 1
D. 0
Answer
619.2k+ views
Hint: Use the Componendo Dividendo rule in the given expression. Apply trigonometric identities and simplify the expression to get the expression as \[\tan \left( \theta +\alpha \right)+2\tan \alpha \].
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

