Answer
Verified
468.6k+ views
Hint: When two lines, one real axis and the other imaginary axis passes perpendicular through a circle, the circle is divided into four quadrants. Into quadrant I, where both x and y-axis are positive, Quadrant II, here x-axis is negative, and the y-axis is positive, Quadrant III here both the x-axis and y-axis are negative, and in Quadrant IV x-axis is positive, and the y-axis is negative.
In the case of the trigonometric functions in quadrant I, all the functions are positive, in Quadrant II, Sin and Cosec functions are positive, and other functions are negative, in Quadrant III, tan and cot functions are positive and other are negative, and in the case of Quadrant IV, Cos and Sec functions are positive and other being negative.
Complete step by step solution: \[\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \tan A\]
One of the methods to remove the square root is the rationalization where the numerator and the denominator are multiplied by the same rational number; hence we will rationalize the LHS of the given function:
\[
\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sqrt {\dfrac{{\left( {1 + \sin A} \right)\left( {1 + \sin A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}} \\
= \sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{\left( {1 - {{\sin }^2}A} \right)}}} \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\sqrt {\left( {{{\cos }^2}A} \right)} }}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} \\
\]
Hence, we have got the LHS as: \[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}}\]
We know\[\sqrt {\left( {{{\cos }^2}A} \right)} = \left| {\cos A} \right| = \pm \cos A\], hence we put the value \[ + \cos A\]and \[ - \cos A\]to check the function:
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ + \cos A}} + \dfrac{{\sin A}}{{ + \cos A}} = \sec A + \tan A - - - - (i)\]
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ - \cos A}} + \dfrac{{\sin A}}{{ - \cos A}} = - \sec A - \tan A - - - - (ii)\]
Hence we can see in equation (i) \[ + \cos A\] satisfy the given equation, \[\cos A\] is positive only in quadrant I and quadrant IV.
Option C is correct.
Note: The co-function identities show the relationship between the sin, cos, tan, cosine, sec, and cot function. The value of the trigonometric function for an angle is equal to the value of the cofunction of the complement.
In the case of the trigonometric functions in quadrant I, all the functions are positive, in Quadrant II, Sin and Cosec functions are positive, and other functions are negative, in Quadrant III, tan and cot functions are positive and other are negative, and in the case of Quadrant IV, Cos and Sec functions are positive and other being negative.
Complete step by step solution: \[\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \tan A\]
One of the methods to remove the square root is the rationalization where the numerator and the denominator are multiplied by the same rational number; hence we will rationalize the LHS of the given function:
\[
\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sqrt {\dfrac{{\left( {1 + \sin A} \right)\left( {1 + \sin A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}} \\
= \sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{\left( {1 - {{\sin }^2}A} \right)}}} \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\sqrt {\left( {{{\cos }^2}A} \right)} }}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} \\
\]
Hence, we have got the LHS as: \[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}}\]
We know\[\sqrt {\left( {{{\cos }^2}A} \right)} = \left| {\cos A} \right| = \pm \cos A\], hence we put the value \[ + \cos A\]and \[ - \cos A\]to check the function:
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ + \cos A}} + \dfrac{{\sin A}}{{ + \cos A}} = \sec A + \tan A - - - - (i)\]
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ - \cos A}} + \dfrac{{\sin A}}{{ - \cos A}} = - \sec A - \tan A - - - - (ii)\]
Hence we can see in equation (i) \[ + \cos A\] satisfy the given equation, \[\cos A\] is positive only in quadrant I and quadrant IV.
Option C is correct.
Note: The co-function identities show the relationship between the sin, cos, tan, cosine, sec, and cot function. The value of the trigonometric function for an angle is equal to the value of the cofunction of the complement.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE