
If sum of two unit vectors is also a unit vector, then magnitude of their difference and angle between the two given unit vectors is:
A) \[\sqrt 3 ,60^\circ \]
B) $\sqrt 3 ,120^\circ $
C) \[\sqrt 2 ,60^\circ \]
D) $\sqrt 2 ,120^\circ $
Answer
130.5k+ views
Hint: For any vector to be a unit vector, the modulus of the vector or the scalar component of the vector has to be $1$ . Suppose the vector given in the question are $\overrightarrow a $ and $\overrightarrow b $ , then the question implies that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Correction Window 2025 Session 2 (Open) Live Updates – Form Correction Link, Fees, Steps

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
