
If $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ , then $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ equals
(A) $ - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(B) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(C) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \dfrac{1}{2}} \right)$
(D) $\left( {\dfrac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}} + \dfrac{1}{2}} \right)$
Answer
573.3k+ views
Hint: Here, the sum of $n$ consecutive terms of an expression is given as $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$. We have to firstly find the term ${t_r}$ by using formula ${t_r} = {S_n} - {S_{n - 1}}$. write $\dfrac{1}{{{t_r}}}$ and arrange them in suitable form then apply $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ and we will get that the successive terms cancel each others.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

