
If $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ , then $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ equals
(A) $ - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(B) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(C) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \dfrac{1}{2}} \right)$
(D) $\left( {\dfrac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}} + \dfrac{1}{2}} \right)$
Answer
474.3k+ views
Hint: Here, the sum of $n$ consecutive terms of an expression is given as $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$. We have to firstly find the term ${t_r}$ by using formula ${t_r} = {S_n} - {S_{n - 1}}$. write $\dfrac{1}{{{t_r}}}$ and arrange them in suitable form then apply $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ and we will get that the successive terms cancel each others.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
