If the arms of one angle are respectively parallel to the arms of another angle, then the two angles are
A. neither equal nor supplementary
B. not equal but supplementary
C. equal but not supplementary
D. both equal and supplementary
Answer
Verified
483.3k+ views
Hint: To solve this problem, we should construct a diagram of the given situation and apply the properties of the angles between parallel lines and transversals. Using the alternate angle property which states that the angles corresponding to the transversal between two parallel lines are equal and the supplementary property which states that the inward angles are always supplementary, we can find the relation between the angles. In our case, two configurations are possible and we have checked both of them.
Complete step-by-step answer:
In our question, 2 configurations are possible. They are
Let us consider the configuration-1,
According to the question let us consider the lines AC is parallel to DM and AB is parallel to DF. We have to compare the angles, $ \angle CAB $ and $ \angle MDF $ .
In the figure, NO is parallel to PQ, the angle between the lines SR and NO is equal to the angle between the lines SR and PQ. This is called the corresponding angles property.
Using this property, from configuration-1 , we can write
AB is parallel to DF and MD acts as the transversal. So
$ \angle MEB=\angle MDF $
Similarly, the lines AC and MD are parallel to each other. So
$ \angle CAB=\angle MEB $
Using these two relations, we can write
\[\angle MDF=\angle MEB=\angle CAB\]
So we can conclude that the two required angles $ \angle CAB $ and $ \angle MDF $ are equal.
In the figure, NO is parallel to PQ, we can infer from the diagram that
$ \angle OTR+\angle SUQ=\pi $
For configuration-2, according to the question let us consider the lines AC is parallel to DM and AB is parallel to DF. We have to compare the angles, $ \angle IJK $ and $ \angle GHI $ .
For configuration-2 using the above property, we can write
GH is parallel to LI and GI is the transversal , so
$ \angle GHI+\angle LIH=\pi \to \left( 1 \right) $
From the corresponding angles property, we know that
$ \angle LIH=\angle IJK $ .
Using this result in equation-1 we get
$ \angle GHI+\angle IJK=\pi $
So, the two required angles are supplementary.
$ \therefore $ The required two angles can either be equal or supplementary depending on the configuration of the lines.
So, the correct answer is “Option D”.
Note: Students might tend to choose the option containing equal but not supplementary because that is an obvious configuration that comes to mind. But, there is another configuration which leads to a result of two angles being supplementary and students should make a note of that configuration.
Complete step-by-step answer:
In our question, 2 configurations are possible. They are
Let us consider the configuration-1,
According to the question let us consider the lines AC is parallel to DM and AB is parallel to DF. We have to compare the angles, $ \angle CAB $ and $ \angle MDF $ .
In the figure, NO is parallel to PQ, the angle between the lines SR and NO is equal to the angle between the lines SR and PQ. This is called the corresponding angles property.
Using this property, from configuration-1 , we can write
AB is parallel to DF and MD acts as the transversal. So
$ \angle MEB=\angle MDF $
Similarly, the lines AC and MD are parallel to each other. So
$ \angle CAB=\angle MEB $
Using these two relations, we can write
\[\angle MDF=\angle MEB=\angle CAB\]
So we can conclude that the two required angles $ \angle CAB $ and $ \angle MDF $ are equal.
In the figure, NO is parallel to PQ, we can infer from the diagram that
$ \angle OTR+\angle SUQ=\pi $
For configuration-2, according to the question let us consider the lines AC is parallel to DM and AB is parallel to DF. We have to compare the angles, $ \angle IJK $ and $ \angle GHI $ .
For configuration-2 using the above property, we can write
GH is parallel to LI and GI is the transversal , so
$ \angle GHI+\angle LIH=\pi \to \left( 1 \right) $
From the corresponding angles property, we know that
$ \angle LIH=\angle IJK $ .
Using this result in equation-1 we get
$ \angle GHI+\angle IJK=\pi $
So, the two required angles are supplementary.
$ \therefore $ The required two angles can either be equal or supplementary depending on the configuration of the lines.
So, the correct answer is “Option D”.
Note: Students might tend to choose the option containing equal but not supplementary because that is an obvious configuration that comes to mind. But, there is another configuration which leads to a result of two angles being supplementary and students should make a note of that configuration.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
List some examples of Rabi and Kharif crops class 8 biology CBSE
In what language is our national anthem written A Sanskrit class 8 social science CBSE
Alla Rakha was an exponent of which of the following class 8 social science CBSE
State the differences between manure and fertilize class 8 biology CBSE
Application to your principal for the character ce class 8 english CBSE