Answer
Verified
431.7k+ views
Hint: Use the formula for pressure depth relation. This formula gives the relation between the atmospheric pressure, pressure at a depth h, density of liquid and acceleration due to gravity. Convert the given atmospheric pressure in the SI system of units and determine the required depth of the water.
Formula used:
The pressure-depth formula is given by
\[P = {P_0} + \rho gh\] …… (1)
Here, \[{P_0}\] is the atmospheric pressure, \[P\] is the pressure at depth \[h\], \[\rho \] is density of the liquid and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the atmospheric pressure is 76 cm of mercury.
We know that the pressure 76 cm of mercury is equal to one atmospheric pressure.
\[1\,{\text{atm}} = {\text{76 cm of mercury}}\]
The pressure in one atmosphere is equal to \[1.013 \times {10^5}\,{\text{Pa}}\].
\[1\,{\text{atm}} = 1.013 \times {10^5}\,{\text{Pa}}\]
Hence, the atmospheric pressure \[1.013 \times {10^5}\,{\text{Pa}}\].
\[{P_0} = 1.013 \times {10^5}\,{\text{Pa}}\]
Here, we have asked to determine the depth of water at which the pressure of the water becomes 4 atm.
$P= 4atm$
Convert the unit of pressure at depth h in Pascal.
\[P = \left( {4\,{\text{atm}}} \right)\left( {\dfrac{{1.013 \times {{10}^5}\,{\text{Pa}}}}{{1\,{\text{atm}}}}} \right)\]
\[ \Rightarrow P = 4 \times 1.013 \times {10^5}\,{\text{Pa}}\]
We know that the density of water is \[1000\,{\text{kg/}}{{\text{m}}^3}\] and the value of acceleration due to gravity is \[9.8\,{\text{m/}}{{\text{s}}^2}\].
\[\rho = 1000\,{\text{kg/}}{{\text{m}}^3}\]
\[g = 9.8\,{\text{m/}}{{\text{s}}^2}\]
Let us now determine the depth at which pressure of the water is 4 atm using equation (1).
Substitute \[4 \times 1.013 \times {10^5}\,{\text{Pa}}\] for \[P\], \[1.013 \times {10^5}\,{\text{Pa}}\] for \[{P_0}\], \[1000\,{\text{kg/}}{{\text{m}}^3}\] for \[\rho \] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in equation (1).
\[\left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) = \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right) + \left( {1000\,{\text{kg/}}{{\text{m}}^3}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)h\]
\[ \Rightarrow 980h = \left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) - \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right)\]
\[ \Rightarrow h = \dfrac{{\left( {4 - 1} \right) \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = \dfrac{{3 \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = 31\,{\text{m}}\]
Therefore, the depth at which the pressure of water is 4 atm is \[31\,{\text{m}}\].
So, the correct answer is “Option A”.
Note:
The students should not forget to convert the unit of the pressure from atmospheric pressure to Pascal.
This is because all the physical quantities used in the formula pressure depth relation are in the SI system of units.
Hence, one should convert the units of both the pressure values 1 atm and 4 atm.
Formula used:
The pressure-depth formula is given by
\[P = {P_0} + \rho gh\] …… (1)
Here, \[{P_0}\] is the atmospheric pressure, \[P\] is the pressure at depth \[h\], \[\rho \] is density of the liquid and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the atmospheric pressure is 76 cm of mercury.
We know that the pressure 76 cm of mercury is equal to one atmospheric pressure.
\[1\,{\text{atm}} = {\text{76 cm of mercury}}\]
The pressure in one atmosphere is equal to \[1.013 \times {10^5}\,{\text{Pa}}\].
\[1\,{\text{atm}} = 1.013 \times {10^5}\,{\text{Pa}}\]
Hence, the atmospheric pressure \[1.013 \times {10^5}\,{\text{Pa}}\].
\[{P_0} = 1.013 \times {10^5}\,{\text{Pa}}\]
Here, we have asked to determine the depth of water at which the pressure of the water becomes 4 atm.
$P= 4atm$
Convert the unit of pressure at depth h in Pascal.
\[P = \left( {4\,{\text{atm}}} \right)\left( {\dfrac{{1.013 \times {{10}^5}\,{\text{Pa}}}}{{1\,{\text{atm}}}}} \right)\]
\[ \Rightarrow P = 4 \times 1.013 \times {10^5}\,{\text{Pa}}\]
We know that the density of water is \[1000\,{\text{kg/}}{{\text{m}}^3}\] and the value of acceleration due to gravity is \[9.8\,{\text{m/}}{{\text{s}}^2}\].
\[\rho = 1000\,{\text{kg/}}{{\text{m}}^3}\]
\[g = 9.8\,{\text{m/}}{{\text{s}}^2}\]
Let us now determine the depth at which pressure of the water is 4 atm using equation (1).
Substitute \[4 \times 1.013 \times {10^5}\,{\text{Pa}}\] for \[P\], \[1.013 \times {10^5}\,{\text{Pa}}\] for \[{P_0}\], \[1000\,{\text{kg/}}{{\text{m}}^3}\] for \[\rho \] and \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\] in equation (1).
\[\left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) = \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right) + \left( {1000\,{\text{kg/}}{{\text{m}}^3}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)h\]
\[ \Rightarrow 980h = \left( {4 \times 1.013 \times {{10}^5}\,{\text{Pa}}} \right) - \left( {1.013 \times {{10}^5}\,{\text{Pa}}} \right)\]
\[ \Rightarrow h = \dfrac{{\left( {4 - 1} \right) \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = \dfrac{{3 \times 1.013 \times {{10}^5}\,{\text{Pa}}}}{{9800}}\]
\[ \Rightarrow h = 31\,{\text{m}}\]
Therefore, the depth at which the pressure of water is 4 atm is \[31\,{\text{m}}\].
So, the correct answer is “Option A”.
Note:
The students should not forget to convert the unit of the pressure from atmospheric pressure to Pascal.
This is because all the physical quantities used in the formula pressure depth relation are in the SI system of units.
Hence, one should convert the units of both the pressure values 1 atm and 4 atm.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE