
If the column matrix $A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and row matrix $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$ then verify that ${\left( {AB} \right)^\prime } = B'A'$.
Answer
621.9k+ views
Hint: In this question apply the property of transpose (i.e. rows changed into column and column changed into rows) later on apply the property of matrix multiplication, so use these concepts to reach the solution of the question.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Given matrix is
$A = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now A’ is the transpose of matrix (i.e. rows changed into column and column changed into rows) so apply transpose of A we have,
$A' = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
And the transpose of B is
$B' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]$
Now the given equation is
${\left( {AB} \right)^\prime } = B'A'$
Now, consider L.H.S
$ = {\left( {AB} \right)^\prime }$
First calculate AB we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2} \\
4 \\
5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3&{ - 6}
\end{array}} \right]$
Now apply matrix multiplication we have
$AB = \left[ {\begin{array}{*{20}{c}}
{ - 2 \times 1}&{ - 2 \times 3}&{ - 2 \times \left( { - 6} \right)} \\
{4 \times 1}&{4 \times 3}&{4 \times \left( { - 6} \right)} \\
{5 \times 1}&{5 \times 3}&{5 \times - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&{ - 6}&{12} \\
4&{12}&{ - 24} \\
5&{15}&{ - 30}
\end{array}} \right]$
Now take transpose of above matrix we have
${\left( {AB} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$………… (1)
Now consider R.H.S
$ = B'A'$
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
1 \\
3 \\
{ - 6}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5
\end{array}} \right]$
Now apply matrix multiplication we have
$ \Rightarrow B'A' = \left[ {\begin{array}{*{20}{c}}
{1 \times \left( { - 2} \right)}&{1 \times 4}&{1 \times 5} \\
{3 \times \left( { - 2} \right)}&{3 \times 4}&{3 \times 5} \\
{ - 6 \times \left( { - 2} \right)}&{ - 6 \times 4}&{ - 6 \times 5}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&4&5 \\
{ - 6}&{12}&{15} \\
{12}&{ - 24}&{ - 30}
\end{array}} \right]$……………… (2)
Now from equation (1) and (2)
L.H.S = R.H.S
Hence verified.
Note: In such types of question always remember the key concept that we have to remember is that always recall the property of transpose which is stated above so, use this property and calculate the transpose of A and B, then apply matrix multiplication on given equation and calculate L.H.S and R.H.S separately and check whether they are equal or not if yes then the given condition is satisfied which is the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

