Answer
Verified
362.7k+ views
Hint: To find the force between two charges, Coulomb’s law is used. The force between two charges is inversely proportional to the square of the distance between them, this is known as Coulomb’s law. A constant is introduced to remove the proportionality sign. Using this relation, the given problem can be solved.
Formula used:
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
Where,
$F$ is the force, ${q_1},{q_2}$ are two charges, $r$ radius, and $K$ is the constant.
Complete step by step solution:
Given two charges has the electric force of $200N$. To find the electric forces between them when we increase or decrease the charges by $10\% $. Consider the given diagram.
To solve the given problem, consider Coulomb's law. The force between two charges is inversely proportional to the square of the distance between them, this is known as Coulomb’s law. A constant is introduced to remove the proportionality sign. The mathematical representation of the law:
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
Where,
$F$ is the force, ${q_1},{q_2}$ are two charges, $r$ radius, and $K$ is the constant.
There are two charges given. Find the charges on the two points separately. Consider the $10\% $ as a decimal number as $0.1$
$ \Rightarrow {q_1}^\prime = {q_1} + \left( {0.1} \right){q_1}$
$ \Rightarrow {q_1}^\prime = 1.1{q_1}$
Similarly for other charge,
$ \Rightarrow {q_2}^\prime = {q_2} + \left( {0.1} \right){q_2}$
$ \Rightarrow {q_2}^\prime = 0.9{q_2}$
Calculate the forces on the charge. The formula is,
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}} = 200N$
And,
$ \Rightarrow F' = \dfrac{{K\left( {{{q'}_1}} \right){q_1}\left( {{{q'}_2}} \right){q_2}}}{{{r^2}}}$
Substitute the values of the point charges.
$ \Rightarrow F' = \dfrac{{K\left( {1.1} \right){q_1}\left( {0.9} \right){q_2}}}{{{r^2}}}$
Simplify the equation,
$ \Rightarrow F' = \left( {1.1} \right) \times \left( {0.9} \right)\dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
The value of $\dfrac{{K{q_1}{q_2}}}{{{r^2}}}$ is $200N$
$ \Rightarrow F' = \left( {1.1} \right) \times \left( {0.9} \right) \times 200N$
Simplify using multiplication.
$ \Rightarrow F' = 0.99 \times 200N$
$ \Rightarrow F' = 198N$
Therefore, the electrical force between them for the same distance becomes $198N$.
Hence, the option $\left( C \right)$ is the correct option.
Note:
There are two types of electrical charges. One is positive and another is negative. Between the two-point charges, the coulomb’s force between them is attractive when both the charges have opposite signs. If the force is negative, the coulomb’s force between them is repulsive when both have the same sign.
Formula used:
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
Where,
$F$ is the force, ${q_1},{q_2}$ are two charges, $r$ radius, and $K$ is the constant.
Complete step by step solution:
Given two charges has the electric force of $200N$. To find the electric forces between them when we increase or decrease the charges by $10\% $. Consider the given diagram.
To solve the given problem, consider Coulomb's law. The force between two charges is inversely proportional to the square of the distance between them, this is known as Coulomb’s law. A constant is introduced to remove the proportionality sign. The mathematical representation of the law:
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
Where,
$F$ is the force, ${q_1},{q_2}$ are two charges, $r$ radius, and $K$ is the constant.
There are two charges given. Find the charges on the two points separately. Consider the $10\% $ as a decimal number as $0.1$
$ \Rightarrow {q_1}^\prime = {q_1} + \left( {0.1} \right){q_1}$
$ \Rightarrow {q_1}^\prime = 1.1{q_1}$
Similarly for other charge,
$ \Rightarrow {q_2}^\prime = {q_2} + \left( {0.1} \right){q_2}$
$ \Rightarrow {q_2}^\prime = 0.9{q_2}$
Calculate the forces on the charge. The formula is,
$ \Rightarrow F = \dfrac{{K{q_1}{q_2}}}{{{r^2}}} = 200N$
And,
$ \Rightarrow F' = \dfrac{{K\left( {{{q'}_1}} \right){q_1}\left( {{{q'}_2}} \right){q_2}}}{{{r^2}}}$
Substitute the values of the point charges.
$ \Rightarrow F' = \dfrac{{K\left( {1.1} \right){q_1}\left( {0.9} \right){q_2}}}{{{r^2}}}$
Simplify the equation,
$ \Rightarrow F' = \left( {1.1} \right) \times \left( {0.9} \right)\dfrac{{K{q_1}{q_2}}}{{{r^2}}}$
The value of $\dfrac{{K{q_1}{q_2}}}{{{r^2}}}$ is $200N$
$ \Rightarrow F' = \left( {1.1} \right) \times \left( {0.9} \right) \times 200N$
Simplify using multiplication.
$ \Rightarrow F' = 0.99 \times 200N$
$ \Rightarrow F' = 198N$
Therefore, the electrical force between them for the same distance becomes $198N$.
Hence, the option $\left( C \right)$ is the correct option.
Note:
There are two types of electrical charges. One is positive and another is negative. Between the two-point charges, the coulomb’s force between them is attractive when both the charges have opposite signs. If the force is negative, the coulomb’s force between them is repulsive when both have the same sign.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE