Answer
Verified
495.9k+ views
Hint: We will compare the ratio between Harmonic mean and Geometric mean by using their general equations and try to solve this question.
Complete step-by-step Solution:
We can use the below formulas to solve the question.
Harmonic mean $=\dfrac{2ab}{a+b}$
Geometric mean $=\sqrt{ab}$
It is given in the question that the harmonic mean between two positive numbers to their geometric mean is 12:13.
We have to find the ratio of the numbers.
Let us assume the two positive numbers as a, b.
Let us consider the case of harmonic mean first. The formula for the harmonic mean for two numbers a and b is given by,
Harmonic mean $=\dfrac{2ab}{a+b}$
Now, let us consider the case of geometric mean. The formula for the geometric mean of two numbers a and b is given by,
Geometric mean $=\sqrt{ab}$
So, from question, we have;
$\dfrac{\text{Harmonic mean}}{\text{Geometric mean}}=\dfrac{12}{13}$
Substituting the known formulas of harmonic mean and geometric mean in the above equation we get,
$\dfrac{\dfrac{2ab}{a+b}}{\sqrt{ab}}=\dfrac{12}{13}$
Multiplying and dividing the LHS with $\sqrt{ab}$, we get,
$\dfrac{2\sqrt{ab}}{a+b}=\dfrac{12}{13}$
Taking 2 to RHS and simplifying further, we get,
$\begin{align}
& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{12}{2\times 13} \\
& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{6}{13} \\
& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=\dfrac{13}{6} \\
& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=\dfrac{13}{6} \\
\end{align}$
Simplify the terms on LHS using the roots, we get,
$\Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=\dfrac{13}{6}.............\left( 1 \right)$
Let us assume $x=\sqrt{\dfrac{a}{b}}$
Substituting $x=\sqrt{\dfrac{a}{b}}$ in equation (1), we get,
$\begin{align}
& \Rightarrow x+\dfrac{1}{x}=\dfrac{13}{6}............\left( 2 \right) \\
& \Rightarrow \dfrac{{{x}^{2}}+1}{x}=\dfrac{13}{6} \\
\end{align}$
On cross multiplying, we get,
$\begin{align}
& 6{{x}^{2}}+6=13x \\
& \Rightarrow 6{{x}^{2}}-13x+6=0 \\
\end{align}$
We have obtained a quadratic equation. We can solve the same using the middle term split method as shown below,
$\begin{align}
& \Rightarrow 6{{x}^{2}}-9x-4x+6=0 \\
& \Rightarrow 6x\left( x-\dfrac{3}{2} \right)-4\left( x-\dfrac{3}{2} \right)=0 \\
\end{align}$
Taking $\left( x-\dfrac{3}{2} \right)$ common from the above equation, we get,
$\Rightarrow \left( 6x-4 \right)\left( x-\dfrac{3}{2} \right)=0$
Hence, we have either, $6x-4=0\ \ or\ \ x-\dfrac{3}{2}=0$
$\begin{align}
& \Rightarrow x=\dfrac{4}{6}\ or\ x=\dfrac{3}{2} \\
& \Rightarrow x=\dfrac{2}{3}\ or\ x=\dfrac{3}{2} \\
\end{align}$
So, $x=\dfrac{3}{2}\ or\ x=\dfrac{2}{3}$
Since we had assumed $x=\sqrt{\dfrac{a}{b}}$. We can now find the ratio of numbers.
Therefore, we have $x=\sqrt{\dfrac{a}{b}}=\dfrac{3}{2}\ \ or\ \ x=\sqrt{\dfrac{a}{b}}=\dfrac{2}{3}\ $
We can take the square and write,
$\begin{align}
& {{x}^{2}}=\dfrac{a}{b}=\dfrac{9}{4} \\
& or \\
& {{x}^{2}}=\dfrac{a}{b}=\dfrac{4}{9} \\
\end{align}$
So, the ratio can be $\dfrac{9}{4}\ \ or\ \ \dfrac{4}{9}$.
Now, in option only $\dfrac{4}{9}$ is given. So, we will consider $\dfrac{4}{9}$ as the correct answer.
Therefore, option (C) 4:9 is the correct option.
Note: There is an alternate method to solve this question. It is shown as below,
Given,
$\begin{align}
& \dfrac{HM}{GM}=\dfrac{12}{13} \\
& \Rightarrow \dfrac{\dfrac{2ab}{a+b}}{\sqrt{a.b}}=\dfrac{12}{13} \\
\end{align}$
Squaring and simplifying both sides, we get,
$\begin{align}
& \Rightarrow \dfrac{ab}{{{\left( a+b \right)}^{2}}}=\dfrac{36}{169} \\
& \Rightarrow \dfrac{ab}{{{a}^{2}}+{{b}^{2}}+2ab}=\dfrac{36}{169} \\
& \Rightarrow 169ab=36{{a}^{2}}+36{{b}^{2}}+72ab \\
& \Rightarrow 36{{a}^{2}}+36{{b}^{2}}-97ab=0 \\
& \Rightarrow 36{{a}^{2}}-16ab-81ab+36{{b}^{2}}=0 \\
& \Rightarrow \left( 9a-4b \right)\left( 4a+9b \right)=0 \\
\end{align}$
Taking positive value,
$\begin{align}
& \Rightarrow \left( 9a-4b \right)=0 \\
& \Rightarrow 9a=4b \\
& \Rightarrow \dfrac{a}{b}=\dfrac{4}{9} \\
& \Rightarrow a:b=4:9 \\
\end{align}$
Complete step-by-step Solution:
We can use the below formulas to solve the question.
Harmonic mean $=\dfrac{2ab}{a+b}$
Geometric mean $=\sqrt{ab}$
It is given in the question that the harmonic mean between two positive numbers to their geometric mean is 12:13.
We have to find the ratio of the numbers.
Let us assume the two positive numbers as a, b.
Let us consider the case of harmonic mean first. The formula for the harmonic mean for two numbers a and b is given by,
Harmonic mean $=\dfrac{2ab}{a+b}$
Now, let us consider the case of geometric mean. The formula for the geometric mean of two numbers a and b is given by,
Geometric mean $=\sqrt{ab}$
So, from question, we have;
$\dfrac{\text{Harmonic mean}}{\text{Geometric mean}}=\dfrac{12}{13}$
Substituting the known formulas of harmonic mean and geometric mean in the above equation we get,
$\dfrac{\dfrac{2ab}{a+b}}{\sqrt{ab}}=\dfrac{12}{13}$
Multiplying and dividing the LHS with $\sqrt{ab}$, we get,
$\dfrac{2\sqrt{ab}}{a+b}=\dfrac{12}{13}$
Taking 2 to RHS and simplifying further, we get,
$\begin{align}
& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{12}{2\times 13} \\
& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{6}{13} \\
& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=\dfrac{13}{6} \\
& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=\dfrac{13}{6} \\
\end{align}$
Simplify the terms on LHS using the roots, we get,
$\Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=\dfrac{13}{6}.............\left( 1 \right)$
Let us assume $x=\sqrt{\dfrac{a}{b}}$
Substituting $x=\sqrt{\dfrac{a}{b}}$ in equation (1), we get,
$\begin{align}
& \Rightarrow x+\dfrac{1}{x}=\dfrac{13}{6}............\left( 2 \right) \\
& \Rightarrow \dfrac{{{x}^{2}}+1}{x}=\dfrac{13}{6} \\
\end{align}$
On cross multiplying, we get,
$\begin{align}
& 6{{x}^{2}}+6=13x \\
& \Rightarrow 6{{x}^{2}}-13x+6=0 \\
\end{align}$
We have obtained a quadratic equation. We can solve the same using the middle term split method as shown below,
$\begin{align}
& \Rightarrow 6{{x}^{2}}-9x-4x+6=0 \\
& \Rightarrow 6x\left( x-\dfrac{3}{2} \right)-4\left( x-\dfrac{3}{2} \right)=0 \\
\end{align}$
Taking $\left( x-\dfrac{3}{2} \right)$ common from the above equation, we get,
$\Rightarrow \left( 6x-4 \right)\left( x-\dfrac{3}{2} \right)=0$
Hence, we have either, $6x-4=0\ \ or\ \ x-\dfrac{3}{2}=0$
$\begin{align}
& \Rightarrow x=\dfrac{4}{6}\ or\ x=\dfrac{3}{2} \\
& \Rightarrow x=\dfrac{2}{3}\ or\ x=\dfrac{3}{2} \\
\end{align}$
So, $x=\dfrac{3}{2}\ or\ x=\dfrac{2}{3}$
Since we had assumed $x=\sqrt{\dfrac{a}{b}}$. We can now find the ratio of numbers.
Therefore, we have $x=\sqrt{\dfrac{a}{b}}=\dfrac{3}{2}\ \ or\ \ x=\sqrt{\dfrac{a}{b}}=\dfrac{2}{3}\ $
We can take the square and write,
$\begin{align}
& {{x}^{2}}=\dfrac{a}{b}=\dfrac{9}{4} \\
& or \\
& {{x}^{2}}=\dfrac{a}{b}=\dfrac{4}{9} \\
\end{align}$
So, the ratio can be $\dfrac{9}{4}\ \ or\ \ \dfrac{4}{9}$.
Now, in option only $\dfrac{4}{9}$ is given. So, we will consider $\dfrac{4}{9}$ as the correct answer.
Therefore, option (C) 4:9 is the correct option.
Note: There is an alternate method to solve this question. It is shown as below,
Given,
$\begin{align}
& \dfrac{HM}{GM}=\dfrac{12}{13} \\
& \Rightarrow \dfrac{\dfrac{2ab}{a+b}}{\sqrt{a.b}}=\dfrac{12}{13} \\
\end{align}$
Squaring and simplifying both sides, we get,
$\begin{align}
& \Rightarrow \dfrac{ab}{{{\left( a+b \right)}^{2}}}=\dfrac{36}{169} \\
& \Rightarrow \dfrac{ab}{{{a}^{2}}+{{b}^{2}}+2ab}=\dfrac{36}{169} \\
& \Rightarrow 169ab=36{{a}^{2}}+36{{b}^{2}}+72ab \\
& \Rightarrow 36{{a}^{2}}+36{{b}^{2}}-97ab=0 \\
& \Rightarrow 36{{a}^{2}}-16ab-81ab+36{{b}^{2}}=0 \\
& \Rightarrow \left( 9a-4b \right)\left( 4a+9b \right)=0 \\
\end{align}$
Taking positive value,
$\begin{align}
& \Rightarrow \left( 9a-4b \right)=0 \\
& \Rightarrow 9a=4b \\
& \Rightarrow \dfrac{a}{b}=\dfrac{4}{9} \\
& \Rightarrow a:b=4:9 \\
\end{align}$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE