Answer
Verified
468.3k+ views
Hint: The base dissociation constant is a measure of the extent to which a base dissociates into its component ions in water. Hydrolysis constant can be defined as the equilibrium constant for a hydrolysis reaction. The base dissociation is inversely proportional to the hydrolysis constant.
Complete step by step answer:
> ${K}_{b}$ is the base dissociation constant of the reaction. It tells us how completely the base dissociates into its component ions in water. The larger the value of ${K}_{b}$ indicates a high level of dissociation of a strong base.
> Pure water also undergoes auto-ionization to form ${H}_{3}{O}^{+}$ and ${OH}^{-}$ ions and this reaction in which auto-ionization takes place always stays in equilibrium. Therefore, the equilibrium constant for auto-ionization of water is known as ${K}_{w}$ and its value is constant at a particular temperature. At room temperature its value is $1.0 \times {10}^{-14}$.
> Hydrolysis constant is the equilibrium constant of a hydrolysis reaction and it is denoted by ${K}_{H}$. The hydrolysis constant is related to the ionic product of water, ${K}_{w}$ and the base dissociation, ${K}_{b}$.
This relation is given as follows.
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$
Now, for the given hydrolysis reaction:
${ B }^{ + }\quad +\quad { H }_{ 2 }O\quad \longrightarrow \quad BOH\quad +\quad { H }^{ + }$
Now, the expression for hydrolysis constant is:
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$ ------(1)
And is also given that ${K}_{b} = 1.0 \times {1.0}^{-6}$ and we know that the value of ${K}_{w}$ is $1.0 \times {10}^{-14}$. Substituting, these values in equation (1), we get
${ K }_{ H }\quad =\quad \dfrac { 1.0\quad \times \quad { 10 }^{ -14 } }{ 1.0\quad \times \quad { 10 }^{ -6 } }$
${ K }_{ H }\quad =\quad 1.0\quad \times \quad { 10 }^{ -8 }$
Therefore, the value of hydrolysis constant is $1.0 \times {10}^{-8}$.
Hence, the correct answer is option (C).
Note: The auto-ionization reaction always stays in equilibrium because the component ions after the dissociation of water are hydronium ion and hydroxide ion. And the hydronium ion is a very strong acid and the hydroxide ion is a very strong base. Thus they associate again to form water molecules. So, the water molecules and ions always stay in equilibrium.
Complete step by step answer:
> ${K}_{b}$ is the base dissociation constant of the reaction. It tells us how completely the base dissociates into its component ions in water. The larger the value of ${K}_{b}$ indicates a high level of dissociation of a strong base.
> Pure water also undergoes auto-ionization to form ${H}_{3}{O}^{+}$ and ${OH}^{-}$ ions and this reaction in which auto-ionization takes place always stays in equilibrium. Therefore, the equilibrium constant for auto-ionization of water is known as ${K}_{w}$ and its value is constant at a particular temperature. At room temperature its value is $1.0 \times {10}^{-14}$.
> Hydrolysis constant is the equilibrium constant of a hydrolysis reaction and it is denoted by ${K}_{H}$. The hydrolysis constant is related to the ionic product of water, ${K}_{w}$ and the base dissociation, ${K}_{b}$.
This relation is given as follows.
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$
Now, for the given hydrolysis reaction:
${ B }^{ + }\quad +\quad { H }_{ 2 }O\quad \longrightarrow \quad BOH\quad +\quad { H }^{ + }$
Now, the expression for hydrolysis constant is:
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$ ------(1)
And is also given that ${K}_{b} = 1.0 \times {1.0}^{-6}$ and we know that the value of ${K}_{w}$ is $1.0 \times {10}^{-14}$. Substituting, these values in equation (1), we get
${ K }_{ H }\quad =\quad \dfrac { 1.0\quad \times \quad { 10 }^{ -14 } }{ 1.0\quad \times \quad { 10 }^{ -6 } }$
${ K }_{ H }\quad =\quad 1.0\quad \times \quad { 10 }^{ -8 }$
Therefore, the value of hydrolysis constant is $1.0 \times {10}^{-8}$.
Hence, the correct answer is option (C).
Note: The auto-ionization reaction always stays in equilibrium because the component ions after the dissociation of water are hydronium ion and hydroxide ion. And the hydronium ion is a very strong acid and the hydroxide ion is a very strong base. Thus they associate again to form water molecules. So, the water molecules and ions always stay in equilibrium.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE