![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Answer
441.3k+ views
Hint: The length of a direct (external) common tangent to two circles is $ \sqrt{{{d}^{2}}-{{\left( {{r}_{1}}-{{r}_{2}} \right)}^{2}}} $ (Pythagoras' theorem), where $ d $ is the distance between the centers of the circles, and $ {{r}_{1}} $ and $ {{r}_{2}} $ are the radii of the given circles.
The length of a transverse (internal) common tangent to two circles is $ \sqrt{{{d}^{2}}-{{\left( {{r}_{1}}+{{r}_{2}} \right)}^{2}}} $ (Pythagoras' theorem), where $ d $ is the distance between the centers of the circles, and $ {{r}_{1}} $ and $ {{r}_{2}} $ are the radii of the given circles.
Form two equations. We cannot find the values of $ {{r}_{1}} $ and $ {{r}_{2}} $ , but their product $ {{r}_{1}}\times {{r}_{2}} $ can be determined.
Complete step by step answer:
The two tangents be $ AB=11 $ and $ PQ=7 $ , the radii be $ {{r}_{1}}=x $ and $ {{r}_{2}}=y $ , and $ d $ be the distance between the two circles.
Using the formula for the length of the direct common tangent, we have the following equation:
$ A{{B}^{2}}={{d}^{2}}-{{\left( x-y \right)}^{2}} $
⇒ $ {{11}^{2}}={{d}^{2}}-\left( {{x}^{2}}+{{y}^{2}}-2xy \right) $
⇒ $ 121={{d}^{2}}-{{x}^{2}}-{{y}^{2}}+2xy $ ... (1)
Using the formula for the length of the transverse common tangent, we have the following equation:
$ P{{Q}^{2}}={{d}^{2}}-{{\left( x+y \right)}^{2}} $
⇒ $ {{7}^{2}}={{d}^{2}}-\left( {{x}^{2}}+{{y}^{2}}+2xy \right) $
⇒ $ 49={{d}^{2}}-{{x}^{2}}-{{y}^{2}}-2xy $ ... (2)
Subtracting equation (2) from equation (1), we get:
$ 121-49=\left( {{d}^{2}}-{{x}^{2}}-{{y}^{2}}+2xy \right)-\left( {{d}^{2}}-{{x}^{2}}-{{y}^{2}}-2xy \right) $
⇒ $ 72=4xy $
Dividing both sides by 4, gives us:
⇒ $ xy=18 $
Therefore, the answer is C. 18.
Note: Both the direct tangents are equal in length. Both the transverse tangents are also equal.
Direct tangents are longer than the transverse tangents.
The tangents to a circle are perpendicular to the radius of the circle at the point of contact.
A line $ y=mx+c $ is tangent to a circle $ {{x}^{2}}+{{y}^{2}}={{r}^{2}} $ if $ {{c}^{2}}={{r}^{2}}(1+{{m}^{2}}) $ .
The length of a transverse (internal) common tangent to two circles is $ \sqrt{{{d}^{2}}-{{\left( {{r}_{1}}+{{r}_{2}} \right)}^{2}}} $ (Pythagoras' theorem), where $ d $ is the distance between the centers of the circles, and $ {{r}_{1}} $ and $ {{r}_{2}} $ are the radii of the given circles.
Form two equations. We cannot find the values of $ {{r}_{1}} $ and $ {{r}_{2}} $ , but their product $ {{r}_{1}}\times {{r}_{2}} $ can be determined.
Complete step by step answer:
The two tangents be $ AB=11 $ and $ PQ=7 $ , the radii be $ {{r}_{1}}=x $ and $ {{r}_{2}}=y $ , and $ d $ be the distance between the two circles.
![seo images](https://www.vedantu.com/question-sets/b7c43d44-31cc-49a4-97d1-89acb6b1ddd11478346194140681119.png)
Using the formula for the length of the direct common tangent, we have the following equation:
$ A{{B}^{2}}={{d}^{2}}-{{\left( x-y \right)}^{2}} $
⇒ $ {{11}^{2}}={{d}^{2}}-\left( {{x}^{2}}+{{y}^{2}}-2xy \right) $
⇒ $ 121={{d}^{2}}-{{x}^{2}}-{{y}^{2}}+2xy $ ... (1)
Using the formula for the length of the transverse common tangent, we have the following equation:
$ P{{Q}^{2}}={{d}^{2}}-{{\left( x+y \right)}^{2}} $
⇒ $ {{7}^{2}}={{d}^{2}}-\left( {{x}^{2}}+{{y}^{2}}+2xy \right) $
⇒ $ 49={{d}^{2}}-{{x}^{2}}-{{y}^{2}}-2xy $ ... (2)
Subtracting equation (2) from equation (1), we get:
$ 121-49=\left( {{d}^{2}}-{{x}^{2}}-{{y}^{2}}+2xy \right)-\left( {{d}^{2}}-{{x}^{2}}-{{y}^{2}}-2xy \right) $
⇒ $ 72=4xy $
Dividing both sides by 4, gives us:
⇒ $ xy=18 $
Therefore, the answer is C. 18.
Note: Both the direct tangents are equal in length. Both the transverse tangents are also equal.
Direct tangents are longer than the transverse tangents.
The tangents to a circle are perpendicular to the radius of the circle at the point of contact.
A line $ y=mx+c $ is tangent to a circle $ {{x}^{2}}+{{y}^{2}}={{r}^{2}} $ if $ {{c}^{2}}={{r}^{2}}(1+{{m}^{2}}) $ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Your club organized a blood donation camp in your city class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Choose the correct meaning of the idiomphrase from class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Identify the neuter gender noun from the given sentence class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Choose the word which best expresses the meaning of class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Choose the word which is closest to the opposite in class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you graph the function fx 4x class 9 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A Tesla is equivalent to a A Newton per coulomb B Newton class 9 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which are the Top 10 Largest Countries of the World?
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The capital of British India was transferred from Calcutta class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is spore formation class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Queen Victoria became the Empress of India according class 7 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Who was the first scientist to propose a model for class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)