Answer
Verified
402.7k+ views
Hint: To answer this question, we have to use the relation of the resistance with its length and the cross sectional area. From there we can compare the resistance of a wire by substituting once the original length and then the double length.
Formula used:
The formula which is used in solving this question is given by
$ R = \rho \dfrac{l}{A} $ , here $ R $ is the resistance of a wire, $ \rho $ is its resistivity, $ l $ is its length, and $ A $ is its area of cross section.
Complete answer:
Let the original length of the wire be $ l $ and the original resistance be $ R $ . Also, let $ A $ be its cross sectional area.
We know that the relation of the resistance of a wire with the length and the cross sectional area is given by
$ R = \rho \dfrac{l}{A} $ ………………..(1)
Mow, according to the question, the length of the wire is doubled. So, the new length becomes
$\Rightarrow l' = 2l $ ……………….(2)
So the new resistance of the wire is given by
$\Rightarrow R' = \rho \dfrac{{l'}}{A} $
From (2)
$\Rightarrow R' = \rho \dfrac{{2l}}{A} $
$\Rightarrow R' = 2\rho \dfrac{l}{A} $
From (1)
$\Rightarrow R' = 2R $
So, the new resistance, after doubling the length of the wire, becomes twice of the original resistance. Hence, if the length of a wire is doubled, then its resistance becomes doubled.
Note:
We must not get confused as to why the area of the cross section of the wire is taken to be constant. While we are observing the effect of doubling the length of the wire, then we have to take the other parameter, the area of cross section as constant. Otherwise the change in the value of resistance will occur due to the change in the cross sectional area also.
Formula used:
The formula which is used in solving this question is given by
$ R = \rho \dfrac{l}{A} $ , here $ R $ is the resistance of a wire, $ \rho $ is its resistivity, $ l $ is its length, and $ A $ is its area of cross section.
Complete answer:
Let the original length of the wire be $ l $ and the original resistance be $ R $ . Also, let $ A $ be its cross sectional area.
We know that the relation of the resistance of a wire with the length and the cross sectional area is given by
$ R = \rho \dfrac{l}{A} $ ………………..(1)
Mow, according to the question, the length of the wire is doubled. So, the new length becomes
$\Rightarrow l' = 2l $ ……………….(2)
So the new resistance of the wire is given by
$\Rightarrow R' = \rho \dfrac{{l'}}{A} $
From (2)
$\Rightarrow R' = \rho \dfrac{{2l}}{A} $
$\Rightarrow R' = 2\rho \dfrac{l}{A} $
From (1)
$\Rightarrow R' = 2R $
So, the new resistance, after doubling the length of the wire, becomes twice of the original resistance. Hence, if the length of a wire is doubled, then its resistance becomes doubled.
Note:
We must not get confused as to why the area of the cross section of the wire is taken to be constant. While we are observing the effect of doubling the length of the wire, then we have to take the other parameter, the area of cross section as constant. Otherwise the change in the value of resistance will occur due to the change in the cross sectional area also.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE