If the line joining $A\left( 1,3,4 \right)$ and $B$ is divided by the point $\left( -2,3,5 \right)$ in the ratio $1:3$, then $B$ is
(a) $\left( -11,3,8 \right)$
(b) $\left( -11,3,-8 \right)$
(c) $\left( -8,12,20 \right)$
(d) \[\left( 13,6,-13 \right)\]
Answer
Verified
466.8k+ views
Hint: In this question, we are given coordinates of $A$and coordinates of a point $C\left( -2,3,5 \right)$ which divides the line $AB$ in the ratio $1:3$. We have to find the coordinates of point $B$. For this, we will first suppose the coordinates of $B$ and then apply section formula on the line joining $AB$ which is cut by a point in the ratio $1:3$. Section formula on any line with $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ as coordinates of end point cut by a point $\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)$ in the ratio $m:n$is given by –
$\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)=\left( \dfrac{n{{x}_{1}}+m{{x}_{2}}}{m+n},\dfrac{n{{y}_{1}}+m{{y}_{2}}}{m+n},\dfrac{n{{z}_{1}}+m{{z}_{2}}}{m+n} \right)$
Complete step-by-step solution
We are given coordinates of point $A$ as $\left( 1,3,4 \right)$. Let us suppose coordinates of $B$ as $\left( x,y,z \right)$. We are also given coordinates of points which cut the line as $\left( -2,3,5 \right)$. Ratio is given as $1:3$. Hence, by comparing with section formula,
$\begin{align}
& m:n=1:3 \\
& \left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)=\left( 1,3,4 \right) \\
& \left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)=\left( x,y,z \right) \\
& \left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)=\left( -2,3,5 \right) \\
\end{align}$
Putting in the formula, we get –
$\left( -2,3,5 \right)=\left( \dfrac{3\left( 1 \right)+1\left( x \right)}{3+1},\dfrac{3\left( 3 \right)+1\left( y \right)}{3+1},\dfrac{3\left( 4 \right)+1\left( z \right)}{3+1} \right)$
Comparing and separating the terms, we get –
$-2=\dfrac{3\left( 1 \right)+1\left( x \right)}{3+1},3=\dfrac{3\left( 3 \right)+1\left( y \right)}{3+1},5=\dfrac{3\left( 4 \right)+1\left( z \right)}{3+1}$
Solving for value of $x$, we get –
$-2=\dfrac{3+x}{4}$
Cross multiplying, we get –
$\begin{align}
& -8=3+x \\
& x=-11……………......(1) \\
\end{align}$
Solving for value of $y$, we get –
$3=\dfrac{9+y}{4}$
Cross multiplying, we get –
$\begin{align}
& 12=9+y \\
& y=3……….....(2) \\
\end{align}$
Solving for value of $z$, we get –
$5=\dfrac{12+z}{4}$
Cross multiplying, we get –
$\begin{align}
& 20=12+z \\
& z=8 …………....(3) \\
\end{align}$
From equation (1), (2) and (3), we get –
$\left( x,y,z \right)=\left( -11,3,8 \right)$
As we have supposed coordinates of $B$ as $\left( x,y,z \right)$. Therefore, the coordinates of $B$ are $\left( -11,3,8 \right)$.
Hence, option (a) is the correct answer.
Note: Take care in the order of $A$ and $B$. If line $BA$ would have been given, the answer would have changed completely because ratio changes, which changes the solution completely. Also try to draw a diagram so that we can know if the point divides the line internally or externally. For externally, the formula changes accordingly and do not get confused in the value of $m$ and $n$, and also in values of $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and \[\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\].
$\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)=\left( \dfrac{n{{x}_{1}}+m{{x}_{2}}}{m+n},\dfrac{n{{y}_{1}}+m{{y}_{2}}}{m+n},\dfrac{n{{z}_{1}}+m{{z}_{2}}}{m+n} \right)$
Complete step-by-step solution
We are given coordinates of point $A$ as $\left( 1,3,4 \right)$. Let us suppose coordinates of $B$ as $\left( x,y,z \right)$. We are also given coordinates of points which cut the line as $\left( -2,3,5 \right)$. Ratio is given as $1:3$. Hence, by comparing with section formula,
$\begin{align}
& m:n=1:3 \\
& \left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)=\left( 1,3,4 \right) \\
& \left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)=\left( x,y,z \right) \\
& \left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)=\left( -2,3,5 \right) \\
\end{align}$
Putting in the formula, we get –
$\left( -2,3,5 \right)=\left( \dfrac{3\left( 1 \right)+1\left( x \right)}{3+1},\dfrac{3\left( 3 \right)+1\left( y \right)}{3+1},\dfrac{3\left( 4 \right)+1\left( z \right)}{3+1} \right)$
Comparing and separating the terms, we get –
$-2=\dfrac{3\left( 1 \right)+1\left( x \right)}{3+1},3=\dfrac{3\left( 3 \right)+1\left( y \right)}{3+1},5=\dfrac{3\left( 4 \right)+1\left( z \right)}{3+1}$
Solving for value of $x$, we get –
$-2=\dfrac{3+x}{4}$
Cross multiplying, we get –
$\begin{align}
& -8=3+x \\
& x=-11……………......(1) \\
\end{align}$
Solving for value of $y$, we get –
$3=\dfrac{9+y}{4}$
Cross multiplying, we get –
$\begin{align}
& 12=9+y \\
& y=3……….....(2) \\
\end{align}$
Solving for value of $z$, we get –
$5=\dfrac{12+z}{4}$
Cross multiplying, we get –
$\begin{align}
& 20=12+z \\
& z=8 …………....(3) \\
\end{align}$
From equation (1), (2) and (3), we get –
$\left( x,y,z \right)=\left( -11,3,8 \right)$
As we have supposed coordinates of $B$ as $\left( x,y,z \right)$. Therefore, the coordinates of $B$ are $\left( -11,3,8 \right)$.
Hence, option (a) is the correct answer.
Note: Take care in the order of $A$ and $B$. If line $BA$ would have been given, the answer would have changed completely because ratio changes, which changes the solution completely. Also try to draw a diagram so that we can know if the point divides the line internally or externally. For externally, the formula changes accordingly and do not get confused in the value of $m$ and $n$, and also in values of $\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and \[\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\].
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE