Answer
Verified
497.7k+ views
Hint: Here, we will use the Arithmetic Progression Concept and the ${n^{th}}$term formulae i.e..,${T_n} = a + (n - 1)d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE