
If the ${{n}^{th}}$ term of an AP is $6n+2$, then find the ${{5}^{th}}$ term of the AP is?
Answer
517.5k+ views
Hint: To find the ${{5}^{th}}$ term of the AP we will use ${{n}^{th}}$ term of an A.P formula. Firstly we will write down the formula to find the ${{n}^{th}}$ term of an A.P then we will compare it by the ${{n}^{th}}$ term of the A.P given. Then we will get the value of the first term and the common difference of the A.P. Finally we will use the ${{n}^{th}}$ term of an A.P formula to get our ${{5}^{th}}$ term and desired answer.
Complete step-by-step solution:
It is given to us that ${{n}^{th}}$ term of the AP is as follows:
$6n+2$
So we can say that:
${{a}_{n}}=6n+2$……$\left( 1 \right)$
Now we know the formula to find ${{n}^{th}}$ term of the AP is as below:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
Which when simplified is written as:
${{a}_{n}}={{a}_{1}}+dn-d$……$\left( 2 \right)$
On comparing coefficient of equation (1) and equation (2) we get,
By comparing coefficient of $n$
$d=6$…$\left( 3 \right)$
On comparing constant term,
${{a}_{1}}-d=2$
Put value from equation (3) above we get,
$\begin{align}
& {{a}_{1}}-6=2 \\
& \Rightarrow {{a}_{1}}=2+6 \\
\end{align}$
$\therefore {{a}_{1}}=8$…..$\left( 4 \right)$
Now as we have to find the ${{5}^{th}}$ term of the A.P so,
$n=5$…..$\left( 5 \right)$
Put values from equation (3) (4) and (5) in equation (2) we get,
$\begin{align}
& {{a}_{5}}=8+6\times 5-6 \\
& \Rightarrow {{a}_{5}}=8+30-6 \\
& \therefore {{a}_{n}}=32 \\
\end{align}$
Hence ${{5}^{th}}$ term of the AP is 32.
Note: An A.P fully written as Arithmetic Progression is a sequence of numbers in a way that the difference between each consecutive number is constant i.e. there is common difference between each consecutive term. A finite portion of arithmetic progression is called a finite arithmetic progression. The sum of the members of a finite arithmetic progression is known as arithmetic series.
Complete step-by-step solution:
It is given to us that ${{n}^{th}}$ term of the AP is as follows:
$6n+2$
So we can say that:
${{a}_{n}}=6n+2$……$\left( 1 \right)$
Now we know the formula to find ${{n}^{th}}$ term of the AP is as below:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
Which when simplified is written as:
${{a}_{n}}={{a}_{1}}+dn-d$……$\left( 2 \right)$
On comparing coefficient of equation (1) and equation (2) we get,
By comparing coefficient of $n$
$d=6$…$\left( 3 \right)$
On comparing constant term,
${{a}_{1}}-d=2$
Put value from equation (3) above we get,
$\begin{align}
& {{a}_{1}}-6=2 \\
& \Rightarrow {{a}_{1}}=2+6 \\
\end{align}$
$\therefore {{a}_{1}}=8$…..$\left( 4 \right)$
Now as we have to find the ${{5}^{th}}$ term of the A.P so,
$n=5$…..$\left( 5 \right)$
Put values from equation (3) (4) and (5) in equation (2) we get,
$\begin{align}
& {{a}_{5}}=8+6\times 5-6 \\
& \Rightarrow {{a}_{5}}=8+30-6 \\
& \therefore {{a}_{n}}=32 \\
\end{align}$
Hence ${{5}^{th}}$ term of the AP is 32.
Note: An A.P fully written as Arithmetic Progression is a sequence of numbers in a way that the difference between each consecutive number is constant i.e. there is common difference between each consecutive term. A finite portion of arithmetic progression is called a finite arithmetic progression. The sum of the members of a finite arithmetic progression is known as arithmetic series.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

List out three methods of soil conservation

What is the relation between orthocenter circumcentre class 10 maths CBSE

