If the points A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are collinear then find the value of k.
Answer
Verified
501.3k+ views
Hint: As given in the question that the given points are collinear. So, for collinear points we know that the area of the triangle formed by them is zero. By applying the area of the triangle of coordinate geometry we get the value of k.
Complete step-by-step answer:
A ($x_1$, $y_1$), B ($x_2$, $y_2$) and C ($x_3$, $y_3$) are all three vertices of the triangle ABC.
Now, the area of triangle formula used when coordinates are given:
Area of $\Delta ABC$ $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
Given: A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are the collinear points. So, the area of the triangle formed by them is zero.
Area of triangle $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
As we know that if the points are collinear, then the area of the triangle is zero. On putting the values of coordinates, we get
$\begin{align}
& \Rightarrow 0=\dfrac{1}{2}\left[ \left( k+1 \right)\left( 2k+3-5k \right)+3k\left( 5k-2k \right)+\left( 5k-1 \right)\left( 2k-2k-3 \right) \right] \\
& \Rightarrow 0=\left( k+1 \right)\left( 3-3k \right)+3k\left( 3k \right)+\left( 5k-1 \right)\left( -3 \right) \\
& \Rightarrow 0=3k-3{{k}^{2}}+3-3k+9{{k}^{2}}-15k+3 \\
& \Rightarrow 0=6{{k}^{2}}-15k+6 \\
\end{align}$
Taking 3 common from right hand side, we have:
$\Rightarrow 0=3\left( 2{{k}^{2}}-5k+2 \right)$
Shifting 3 in left hand side from right hand side, the term will become zero,
$\Rightarrow 0=2{{k}^{2}}-5k+2$
Factorisation using middle term splitting of the above equation, we get
$\begin{align}
& \Rightarrow 0=2{{k}^{2}}-4k-k+2 \\
& \Rightarrow 0=2k\left( k-2 \right)-1\left( k-2 \right) \\
& \Rightarrow 0=\left( 2k-1 \right)\left( k-2 \right) \\
\end{align}$
So, one of them may be zero or both will be zero. Using this we get all the values of k.
$\begin{align}
& \Rightarrow 2k-1=0\text{ or }k-2=0 \\
& \Rightarrow k=\dfrac{1}{2}\text{ or }k=2 \\
\end{align}$
Hence, the values of k are $\dfrac{1}{2},2$.
Note: This problem can be alternatively solved by using the section formula which can be stated as: $\left( x,y \right)=\left( \dfrac{m{{x}_{1}}+{{x}_{2}}}{m+1},\dfrac{m{{y}_{1}}+1{{y}_{2}}}{m+1} \right)\text{ in ratio 1}:m$. Now, let B divide A and C in the ratio 1: m. By putting the values in the above formula, we obtain two equations corresponding to x and y coordinates. So, the values of K and m are evaluated.
Complete step-by-step answer:
A ($x_1$, $y_1$), B ($x_2$, $y_2$) and C ($x_3$, $y_3$) are all three vertices of the triangle ABC.
Now, the area of triangle formula used when coordinates are given:
Area of $\Delta ABC$ $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
Given: A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are the collinear points. So, the area of the triangle formed by them is zero.
Area of triangle $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
As we know that if the points are collinear, then the area of the triangle is zero. On putting the values of coordinates, we get
$\begin{align}
& \Rightarrow 0=\dfrac{1}{2}\left[ \left( k+1 \right)\left( 2k+3-5k \right)+3k\left( 5k-2k \right)+\left( 5k-1 \right)\left( 2k-2k-3 \right) \right] \\
& \Rightarrow 0=\left( k+1 \right)\left( 3-3k \right)+3k\left( 3k \right)+\left( 5k-1 \right)\left( -3 \right) \\
& \Rightarrow 0=3k-3{{k}^{2}}+3-3k+9{{k}^{2}}-15k+3 \\
& \Rightarrow 0=6{{k}^{2}}-15k+6 \\
\end{align}$
Taking 3 common from right hand side, we have:
$\Rightarrow 0=3\left( 2{{k}^{2}}-5k+2 \right)$
Shifting 3 in left hand side from right hand side, the term will become zero,
$\Rightarrow 0=2{{k}^{2}}-5k+2$
Factorisation using middle term splitting of the above equation, we get
$\begin{align}
& \Rightarrow 0=2{{k}^{2}}-4k-k+2 \\
& \Rightarrow 0=2k\left( k-2 \right)-1\left( k-2 \right) \\
& \Rightarrow 0=\left( 2k-1 \right)\left( k-2 \right) \\
\end{align}$
So, one of them may be zero or both will be zero. Using this we get all the values of k.
$\begin{align}
& \Rightarrow 2k-1=0\text{ or }k-2=0 \\
& \Rightarrow k=\dfrac{1}{2}\text{ or }k=2 \\
\end{align}$
Hence, the values of k are $\dfrac{1}{2},2$.
Note: This problem can be alternatively solved by using the section formula which can be stated as: $\left( x,y \right)=\left( \dfrac{m{{x}_{1}}+{{x}_{2}}}{m+1},\dfrac{m{{y}_{1}}+1{{y}_{2}}}{m+1} \right)\text{ in ratio 1}:m$. Now, let B divide A and C in the ratio 1: m. By putting the values in the above formula, we obtain two equations corresponding to x and y coordinates. So, the values of K and m are evaluated.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE