If the polynomial ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ is divided by another polynomial ${{x}^{2}}-2x+k$, the remainder comes out to be x+a, then the value of a is
(a) -1
(b) -5
(c) 1
(d) 5
Answer
Verified
496.8k+ views
Hint: To find the remainder when ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ is divided by ${{x}^{2}}-2x+k$, we perform long division method to divide ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ and ${{x}^{2}}-2x+k$. We would then equate the answer (that is the remainder) to x+a. This would give us the value of a.
Complete step-by-step answer:
Now, to proceed with long division method to divide ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ by ${{x}^{2}}-2x+k$, we get -
${{x}^{2}}$-4x+(8-k)
${{x}^{2}}-2x+k$ $\left| \!{\overline {\,
{{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10 \,}} \right. $
-$\left( {{x}^{4}}-2{{x}^{3}}+k{{x}^{2}} \right)$
\[\left| \!{\overline {\,
-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ } \,}} \right. \]
-$\left( -4{{x}^{3}}+\text{ }8{{x}^{2}}-4kx \right)$
\[\left| \!{\overline {\,
(8-k){{x}^{2}}+(4k-25)x+10 \,}} \right. \]
$-\left( (8-k){{x}^{2}}+(2k-16)x+(8k-{{k}^{2}}) \right)$
\[\]
To understand this, we first write down the divisor (${{x}^{2}}-2x+k$) and dividend (${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$) as shown above. Next we start with the highest power of x and accordingly find the first term of quotient. Thus, in this case since ${{x}^{4}}$ was the highest power term in the dividend, we divide this by the highest term in the divisor (${{x}^{2}}$), thus we get, $\dfrac{{{x}^{4}}}{{{x}^{2}}}={{x}^{4-2}}={{x}^{2}}$.
Next, we multiply ${{x}^{2}}-2x+k$ and ${{x}^{2}}$(first quotient term) to get ${{x}^{4}}-2{{x}^{3}}+k{{x}^{2}}$. Then we subtract $\left( {{x}^{4}}-2{{x}^{3}}+k{{x}^{2}} \right)$ from ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ (which is similar to the long division method). Finally, we obtain \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\] (from subtraction). We then apply the same technique again (but now, \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\]acts as the dividend).
Thus, we divide highest power of \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\] (that is ${{x}^{3}}$) by highest power of divisor. We get, $\dfrac{-4{{x}^{3}}}{{{x}^{2}}}$=-4x (which is the next quotient term). We again follow the same procedure, and then we will get \[(8-k){{x}^{2}}+(4k-25)x+10\] as the dividend. Now, similarly, we multiply by $\dfrac{(8-k){{x}^{2}}}{{{x}^{2}}}$=(8-k). Finally, repeating the steps again, we get the remainder as \[(2k-9)x+(10-8k+{{k}^{2}})\] as the remainder. We stop our process here, since, the highest power of the next dividend (\[(2k-9)x+(10-8k+{{k}^{2}})\]) is less than that of the divisor.
Now, we can equate the remainder to x+a.
Thus,
\[(2k-9)x+(10-8k+{{k}^{2}})\]= x+a
Then, by comparing the coefficient,
2k-9=1
Thus, k=5.
Also, $10-8k+{{k}^{2}}$=a
Since, k=5,
a = 10 – 8(5) +${{5}^{2}}$
a = -5
Hence, the correct answer is (b) -5.
Note: To solve a problem by long division method, one needs to remember that all the terms of divisor, dividend and quotient should be algebraic. Thus, there should not be any logarithmic or exponential term. Further, one should stop the process, when the highest power of the divisor is greater than the highest power of the dividend. Basically there should be no $\dfrac{1}{x}$or $\dfrac{1}{{{x}^{2}}}$ terms in the quotient.
Complete step-by-step answer:
Now, to proceed with long division method to divide ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ by ${{x}^{2}}-2x+k$, we get -
${{x}^{2}}$-4x+(8-k)
${{x}^{2}}-2x+k$ $\left| \!{\overline {\,
{{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10 \,}} \right. $
-$\left( {{x}^{4}}-2{{x}^{3}}+k{{x}^{2}} \right)$
\[\left| \!{\overline {\,
-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ } \,}} \right. \]
-$\left( -4{{x}^{3}}+\text{ }8{{x}^{2}}-4kx \right)$
\[\left| \!{\overline {\,
(8-k){{x}^{2}}+(4k-25)x+10 \,}} \right. \]
$-\left( (8-k){{x}^{2}}+(2k-16)x+(8k-{{k}^{2}}) \right)$
\[\]
To understand this, we first write down the divisor (${{x}^{2}}-2x+k$) and dividend (${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$) as shown above. Next we start with the highest power of x and accordingly find the first term of quotient. Thus, in this case since ${{x}^{4}}$ was the highest power term in the dividend, we divide this by the highest term in the divisor (${{x}^{2}}$), thus we get, $\dfrac{{{x}^{4}}}{{{x}^{2}}}={{x}^{4-2}}={{x}^{2}}$.
Next, we multiply ${{x}^{2}}-2x+k$ and ${{x}^{2}}$(first quotient term) to get ${{x}^{4}}-2{{x}^{3}}+k{{x}^{2}}$. Then we subtract $\left( {{x}^{4}}-2{{x}^{3}}+k{{x}^{2}} \right)$ from ${{x}^{4}}-6{{x}^{3}}+16{{x}^{2}}-25x+10$ (which is similar to the long division method). Finally, we obtain \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\] (from subtraction). We then apply the same technique again (but now, \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\]acts as the dividend).
Thus, we divide highest power of \[-4{{x}^{3}}+(16-k){{x}^{2}}-25x+10\text{ }\] (that is ${{x}^{3}}$) by highest power of divisor. We get, $\dfrac{-4{{x}^{3}}}{{{x}^{2}}}$=-4x (which is the next quotient term). We again follow the same procedure, and then we will get \[(8-k){{x}^{2}}+(4k-25)x+10\] as the dividend. Now, similarly, we multiply by $\dfrac{(8-k){{x}^{2}}}{{{x}^{2}}}$=(8-k). Finally, repeating the steps again, we get the remainder as \[(2k-9)x+(10-8k+{{k}^{2}})\] as the remainder. We stop our process here, since, the highest power of the next dividend (\[(2k-9)x+(10-8k+{{k}^{2}})\]) is less than that of the divisor.
Now, we can equate the remainder to x+a.
Thus,
\[(2k-9)x+(10-8k+{{k}^{2}})\]= x+a
Then, by comparing the coefficient,
2k-9=1
Thus, k=5.
Also, $10-8k+{{k}^{2}}$=a
Since, k=5,
a = 10 – 8(5) +${{5}^{2}}$
a = -5
Hence, the correct answer is (b) -5.
Note: To solve a problem by long division method, one needs to remember that all the terms of divisor, dividend and quotient should be algebraic. Thus, there should not be any logarithmic or exponential term. Further, one should stop the process, when the highest power of the divisor is greater than the highest power of the dividend. Basically there should be no $\dfrac{1}{x}$or $\dfrac{1}{{{x}^{2}}}$ terms in the quotient.
Recently Updated Pages
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
What is the distance between the circumcentre and the class 10 maths JEE_Main
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words