
If the potential gradient of two potentiometer wire is ${X_1}$ and ${X_2}$, the resistance per unit length is equal and the current flowing through them are ${I_1}$ and ${I_2}$. Then ${I_1}:{I_2}$ is:-
(A) ${X_1}:{X_2}$
(B) ${X_2}:{X_1}$
(C) ${X_1}^2:{X_2}^2$
(D) ${X_1}^3:{X_2}^3$
Answer
138k+ views
Hint: Potentiometer is a device used to compare the emfs of two cells.(or) to find the emf of a cell (or) to find the internal resistance of a cell (or) to measure potential difference.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Construction: A potentiometer consists of a uniform wire of length 10m arranged between A and B as 10 wires each of length 1m on a wooden board. The wire has specific resistance and low temperature coefficient of resistance. A meter scale is arranged parallel to the wires to measure the balancing length. The resistance of the total wire of the potentiometer is about 5Ω. A Jockey J can be moved on the wire. The balancing length is measured from the end which is connected to the positive terminal of the battery.
Principle: In null deflection position,
Unknown potential difference = Known potential difference.
When steady current passes through the uniform wire of the potentiometer, the potential difference across any part of the wire is directly proportional to the length of the wire.
Complete step by step answer:
1. Potential gradient for wire 1 is ${X_1} = {I_1}{R_1}$.
2. Potential gradient for wire 2 is ${X_2} = {I_2}{R_2}$
But here, resistance per unit length is equal that ${R_1} = {R_2}$
So, The ratios are:
$\Rightarrow$ $
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{\dfrac{{{X_1}}}{{{R_1}}}}}{{\dfrac{{{X_2}}}{{{R_2}}}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{X_1}}}{{{X_2}}} \\
$
hence, correct option is (a)
Note: Potential Gradient is the decrease in potential per unit length. It is calculated as V / L, where V is the potential difference between two points and L is the distance between two points. The longer the wire the lesser the potential gradient and the greater the sensitivity of the potentiometer.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE
