Answer
Verified
496.2k+ views
Hint: Here we go through the properties of the quadratic equation as we know when the roots of the quadratic equation are equal then their discriminant must be equal to zero. So we equate discriminant of this equation equal to zero for finding the value of p.
Complete step-by-step answer:
We know that if in quadratic equation $a{x^2} + bx + c = 0$ when the two roots are equal then its discriminant is equal to zero I.e. ${b^2} - 4ac = 0$.
Now in the question the given quadratic equation is $p{x^2} - 2\sqrt 5 px + 15 = 0$.
By equating it with the general quadratic equation we get a=p, b$ = - 2\sqrt 5 p$ and c=15.
Now we will calculate its discriminant by formula ${b^2} - 4ac = 0$.
$
\Rightarrow {\left( { - 2\sqrt 5 p} \right)^2} - 4 \times p \times 15 = 0 \\
\Rightarrow 20{p^2} - 60p = 0 \\
$
Now take 20p as common we get,
$ \Rightarrow 20p(p - 3) = 0$
When p−3=0 then p=3 or p=0
$p \ne 0$ As it makes a coefficient of ${x^2} = 0$.
Hence, p=3 is the correct answer.
Note: Whenever we face such a question the key concept for solving the question is first point out the hint that is given in the question here in this question the hint is the roots are equal. By this hint we have to think about that case when the roots of the quadratic equation are equal. Then apply that case for finding the value of an unknown term.
Complete step-by-step answer:
We know that if in quadratic equation $a{x^2} + bx + c = 0$ when the two roots are equal then its discriminant is equal to zero I.e. ${b^2} - 4ac = 0$.
Now in the question the given quadratic equation is $p{x^2} - 2\sqrt 5 px + 15 = 0$.
By equating it with the general quadratic equation we get a=p, b$ = - 2\sqrt 5 p$ and c=15.
Now we will calculate its discriminant by formula ${b^2} - 4ac = 0$.
$
\Rightarrow {\left( { - 2\sqrt 5 p} \right)^2} - 4 \times p \times 15 = 0 \\
\Rightarrow 20{p^2} - 60p = 0 \\
$
Now take 20p as common we get,
$ \Rightarrow 20p(p - 3) = 0$
When p−3=0 then p=3 or p=0
$p \ne 0$ As it makes a coefficient of ${x^2} = 0$.
Hence, p=3 is the correct answer.
Note: Whenever we face such a question the key concept for solving the question is first point out the hint that is given in the question here in this question the hint is the roots are equal. By this hint we have to think about that case when the roots of the quadratic equation are equal. Then apply that case for finding the value of an unknown term.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers