
If the ratio of H.M. and G.M. of two quantities is \[12:13\], then the ratio of the number is?
A.\[1:2\]
B.\[2:3\]
C.\[3:4\]
D.None of these
Answer
421.5k+ views
Hint: Here in this question, given the ratio of harmonic mean and Geometric mean we have to find the ratio of the number. As we know harmonic mean defined as \[\dfrac{{2ab}}{{\left( {a + b} \right)}}\] and geometric mean defined as \[\sqrt {ab} \] by taking the ratio of these two we can find the ratio of a and b by using a basic arithmetic operation.
Complete step-by-step answer:
Harmonic mean (H.M) is defined as the reciprocal of arithmetic mean. Arithmetic mean represents a number that is achieved by dividing the sum of the values of a set by the number of values in the set.
The Geometric Mean for a given number of values containing n observations is the nth root of the product of the values.
Let a and b be the numbers, then
\[ \Rightarrow HM = \dfrac{{2ab}}{{a + b}}\]-------(1)
And
\[ \Rightarrow \,\,GM = \sqrt {ab} \]
Given that If the ratio of H.M. and G.M. of two quantities is \[12:13\], then
\[ \Rightarrow \,\,\dfrac{{HM}}{{GM}} = \dfrac{{\dfrac{{2ab}}{{a + b}}}}{{\sqrt {ab} }} = \dfrac{{12}}{{13}}\]
On simplification, we have
\[ \Rightarrow \,\,\dfrac{{HM}}{{GM}} = \dfrac{{2ab}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
\[ \Rightarrow \,\,\dfrac{{2ab}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
Where, \[ab\] can be written as \[{\left( {\sqrt {ab} } \right)^2}\], then
\[ \Rightarrow \,\,\dfrac{{2{{\left( {\sqrt {ab} } \right)}^2}}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
On cancelling the like terms i.e., \[\sqrt {ab} \] in both numerator and denominator, then we have
\[ \Rightarrow \,\,\dfrac{{2\sqrt {ab} }}{{\left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
Divide both side by 2, then
\[ \Rightarrow \,\,\dfrac{{\sqrt {ab} }}{{\left( {a + b} \right)}} = \dfrac{6}{{13}}\]
Taking a reciprocal, we have
\[ \Rightarrow \,\,\dfrac{{a + b}}{{\sqrt {ab} }} = \dfrac{{13}}{6}\]
It can be written as
\[ \Rightarrow \,\,\dfrac{a}{{\sqrt {ab} }} + \dfrac{b}{{\sqrt {ab} }} = \dfrac{{13}}{6}\]
\[ \Rightarrow \,\,\dfrac{{{{\left( {\sqrt a } \right)}^2}}}{{\sqrt a \sqrt b }} + \dfrac{{{{\left( {\sqrt b } \right)}^2}}}{{\sqrt a \sqrt b }} = \dfrac{{13}}{6}\]
On simplification, we have
\[ \Rightarrow \,\,\dfrac{{\sqrt a }}{{\sqrt b }} + \dfrac{{\sqrt b }}{{\sqrt a }} = \dfrac{{13}}{6}\]
It can be written as
\[ \Rightarrow \,\,\sqrt {\dfrac{a}{b}} + \sqrt {\dfrac{b}{a}} = \dfrac{{13}}{6}\]
Let put \[\sqrt {\dfrac{a}{b}} = x\] then \[\sqrt {\dfrac{b}{a}} = \dfrac{1}{x}\] on substituting, we have
\[ \Rightarrow \,\,x + \dfrac{1}{x} = \dfrac{{13}}{6}\]
Taking \[x\] as LCM in LHS, then
\[ \Rightarrow \,\,\dfrac{{{x^2} + 1}}{x} = \dfrac{{13}}{6}\]
On cross multiplication, we have
\[ \Rightarrow \,\,6\left( {{x^2} + 1} \right) = 13x\]
\[ \Rightarrow \,\,6{x^2} + 6 = 13x\]
Subtract \[13x\] on both side, we have
\[ \Rightarrow \,\,6{x^2} - 13x + 6 = 0\]
Now, find a x value by factorization method, then
\[ \Rightarrow \,\,6{x^2} - 13x + 6 = 0\]
\[ \Rightarrow \,\,6{x^2} - 9x - 4x + 6 = 0\]
\[ \Rightarrow \,\,\left( {6{x^2} - 9x} \right) - \left( {4x - 6} \right) = 0\]
Taking out the GCD, then
\[ \Rightarrow \,\,3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0\]
Take out \[\left( {2x - 3} \right)\] as common, then
\[ \Rightarrow \,\,\left( {2x - 3} \right)\left( {3x - 2} \right) = 0\]
Equate each factor to the zero, then
\[ \Rightarrow \,\,2x - 3 = 0\] or \[3x - 2 = 0\]
\[ \Rightarrow \,\,2x = 3\] or \[3x = 2\]
\[ \Rightarrow \,\,x = \dfrac{3}{2}\] or \[x = \dfrac{2}{3}\]
But \[\sqrt {\dfrac{a}{b}} = x\], then
\[ \Rightarrow \,\,\,\sqrt {\dfrac{a}{b}} = \dfrac{3}{2}\] or \[\dfrac{2}{3}\]
Taking square root on both sides, we have
\[ \Rightarrow \,\,\,{\left( {\sqrt {\dfrac{a}{b}} } \right)^2} = {\left( {\dfrac{3}{2}} \right)^2}\] or \[{\left( {\dfrac{2}{3}} \right)^2}\]
On cancelling the square and root, we get
\[ \Rightarrow \,\,\,\dfrac{a}{b} = \dfrac{9}{4}\] or \[\dfrac{4}{9}\]
Hence, the ratio of the number is \[9:4\] or \[4:9\].
Therefore, option (D) is correct.
So, the correct answer is “Option D”.
Note: To solve these kinds of a problem the student must know about the definition of Arithmetic mean, harmonic mean, geometric means and ratios and simplify by using a factorization, tables of multiplication and simple arithmetic operation like addition, subtraction, multiplication and division.
Complete step-by-step answer:
Harmonic mean (H.M) is defined as the reciprocal of arithmetic mean. Arithmetic mean represents a number that is achieved by dividing the sum of the values of a set by the number of values in the set.
The Geometric Mean for a given number of values containing n observations is the nth root of the product of the values.
Let a and b be the numbers, then
\[ \Rightarrow HM = \dfrac{{2ab}}{{a + b}}\]-------(1)
And
\[ \Rightarrow \,\,GM = \sqrt {ab} \]
Given that If the ratio of H.M. and G.M. of two quantities is \[12:13\], then
\[ \Rightarrow \,\,\dfrac{{HM}}{{GM}} = \dfrac{{\dfrac{{2ab}}{{a + b}}}}{{\sqrt {ab} }} = \dfrac{{12}}{{13}}\]
On simplification, we have
\[ \Rightarrow \,\,\dfrac{{HM}}{{GM}} = \dfrac{{2ab}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
\[ \Rightarrow \,\,\dfrac{{2ab}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
Where, \[ab\] can be written as \[{\left( {\sqrt {ab} } \right)^2}\], then
\[ \Rightarrow \,\,\dfrac{{2{{\left( {\sqrt {ab} } \right)}^2}}}{{\sqrt {ab} \left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
On cancelling the like terms i.e., \[\sqrt {ab} \] in both numerator and denominator, then we have
\[ \Rightarrow \,\,\dfrac{{2\sqrt {ab} }}{{\left( {a + b} \right)}} = \dfrac{{12}}{{13}}\]
Divide both side by 2, then
\[ \Rightarrow \,\,\dfrac{{\sqrt {ab} }}{{\left( {a + b} \right)}} = \dfrac{6}{{13}}\]
Taking a reciprocal, we have
\[ \Rightarrow \,\,\dfrac{{a + b}}{{\sqrt {ab} }} = \dfrac{{13}}{6}\]
It can be written as
\[ \Rightarrow \,\,\dfrac{a}{{\sqrt {ab} }} + \dfrac{b}{{\sqrt {ab} }} = \dfrac{{13}}{6}\]
\[ \Rightarrow \,\,\dfrac{{{{\left( {\sqrt a } \right)}^2}}}{{\sqrt a \sqrt b }} + \dfrac{{{{\left( {\sqrt b } \right)}^2}}}{{\sqrt a \sqrt b }} = \dfrac{{13}}{6}\]
On simplification, we have
\[ \Rightarrow \,\,\dfrac{{\sqrt a }}{{\sqrt b }} + \dfrac{{\sqrt b }}{{\sqrt a }} = \dfrac{{13}}{6}\]
It can be written as
\[ \Rightarrow \,\,\sqrt {\dfrac{a}{b}} + \sqrt {\dfrac{b}{a}} = \dfrac{{13}}{6}\]
Let put \[\sqrt {\dfrac{a}{b}} = x\] then \[\sqrt {\dfrac{b}{a}} = \dfrac{1}{x}\] on substituting, we have
\[ \Rightarrow \,\,x + \dfrac{1}{x} = \dfrac{{13}}{6}\]
Taking \[x\] as LCM in LHS, then
\[ \Rightarrow \,\,\dfrac{{{x^2} + 1}}{x} = \dfrac{{13}}{6}\]
On cross multiplication, we have
\[ \Rightarrow \,\,6\left( {{x^2} + 1} \right) = 13x\]
\[ \Rightarrow \,\,6{x^2} + 6 = 13x\]
Subtract \[13x\] on both side, we have
\[ \Rightarrow \,\,6{x^2} - 13x + 6 = 0\]
Now, find a x value by factorization method, then
\[ \Rightarrow \,\,6{x^2} - 13x + 6 = 0\]
\[ \Rightarrow \,\,6{x^2} - 9x - 4x + 6 = 0\]
\[ \Rightarrow \,\,\left( {6{x^2} - 9x} \right) - \left( {4x - 6} \right) = 0\]
Taking out the GCD, then
\[ \Rightarrow \,\,3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0\]
Take out \[\left( {2x - 3} \right)\] as common, then
\[ \Rightarrow \,\,\left( {2x - 3} \right)\left( {3x - 2} \right) = 0\]
Equate each factor to the zero, then
\[ \Rightarrow \,\,2x - 3 = 0\] or \[3x - 2 = 0\]
\[ \Rightarrow \,\,2x = 3\] or \[3x = 2\]
\[ \Rightarrow \,\,x = \dfrac{3}{2}\] or \[x = \dfrac{2}{3}\]
But \[\sqrt {\dfrac{a}{b}} = x\], then
\[ \Rightarrow \,\,\,\sqrt {\dfrac{a}{b}} = \dfrac{3}{2}\] or \[\dfrac{2}{3}\]
Taking square root on both sides, we have
\[ \Rightarrow \,\,\,{\left( {\sqrt {\dfrac{a}{b}} } \right)^2} = {\left( {\dfrac{3}{2}} \right)^2}\] or \[{\left( {\dfrac{2}{3}} \right)^2}\]
On cancelling the square and root, we get
\[ \Rightarrow \,\,\,\dfrac{a}{b} = \dfrac{9}{4}\] or \[\dfrac{4}{9}\]
Hence, the ratio of the number is \[9:4\] or \[4:9\].
Therefore, option (D) is correct.
So, the correct answer is “Option D”.
Note: To solve these kinds of a problem the student must know about the definition of Arithmetic mean, harmonic mean, geometric means and ratios and simplify by using a factorization, tables of multiplication and simple arithmetic operation like addition, subtraction, multiplication and division.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

Draw an outline map of India and mark the following class 9 social science CBSE

Differentiate between the Western and the Eastern class 9 social science CBSE

What is pollution? How many types of pollution? Define it
