
If the temperature of the hot body is raised by \[5\% \] the rate of heat radiated would be increased by how much percentage?
(A) \[12\% \]
(B) \[22\% \]
(C) \[32\% \]
(D) \[42\% \]
Answer
127.8k+ views
Hint: The heat energy radiated is directly proportional to the fourth power of the temperature of the black body. The percentage increase is the difference between the new value and the old value divided by the new value.
Formula used: In this solution we will be using the following formulae;
\[H = \sigma A{T^4}\] where \[H\] is the heat energy radiated, \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body.
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Complete Step-by-Step solution:
Generally, the heat energy radiated by a black body is directly related to the fourth power of the temperature of that black body as given by the Stefan’s law as
\[H = \sigma A{T^4}\] where \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body
Temperature increasing by 5 percent signifies the final temperature to be
\[T' = T + \dfrac{5}{{100}}T\] which by adding and simplifying gives,
\[T' = \dfrac{{21}}{{20}}T\]
\[ \Rightarrow \dfrac{{T'}}{T} = \dfrac{{21}}{{20}}\]
Percentage error can be defined as
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Hence, percentage increase in the heat energy radiated would be defined as
\[PI = \dfrac{{H' - H}}{H} \times 100\% \]
Where
\[H' = \sigma AT{'^4}\]
Hence,
\[\dfrac{{H'}}{H} = \dfrac{{\sigma AT{'^4}}}{{\sigma A{T^4}}} = \dfrac{{T{'^4}}}{{{T^4}}} = {\left( {\dfrac{{T'}}{T}} \right)^4}\]
By inserting known values, we have
\[\dfrac{{H'}}{H} = {\left( {\dfrac{{21}}{{20}}} \right)^4}\]
Hence, by multiplying both sides by \[H\], we get
\[H' = {\left( {\dfrac{{21}}{{20}}} \right)^4}H\]
Going back to the definition, and inserting the value above into it we have
\[PI = \dfrac{{{{\left( {\dfrac{{21}}{{20}}} \right)}^4}H - H}}{H} \times 100\% \]
Dividing numerator and denominator by \[H\], we get
\[PI = \left[ {{{\left( {\dfrac{{21}}{{20}}} \right)}^4} - 1} \right] \times 100\% \]
\[PI = \left[ {{{\left( {1.05} \right)}^4} - 1} \right] \times 100\% \]
Hence, finding the fourth power, we get
\[PI = \left[ {1.22 - 1} \right] \times 100\% \]
Computing the above relation, we get
\[PI = 22\% \]
Hence, the correct option is B.
Note: For clarity; you might have seen a text where heat radiated from a blackbody is written as
\[H = \varepsilon \sigma A{T^4}\] where \[\varepsilon \] is the emissivity of the body. This equation and the one above are identical, this is because for a black body, the emissivity is equal to 1, and hence can drop out of the equation. This equation is more generally used for heat radiated by any type of body.
Formula used: In this solution we will be using the following formulae;
\[H = \sigma A{T^4}\] where \[H\] is the heat energy radiated, \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body.
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Complete Step-by-Step solution:
Generally, the heat energy radiated by a black body is directly related to the fourth power of the temperature of that black body as given by the Stefan’s law as
\[H = \sigma A{T^4}\] where \[\sigma \] is the Stefan Boltzmann constant, \[A\] is area of the surface of the blackbody, and \[T\] is the absolute temperature of the black body
Temperature increasing by 5 percent signifies the final temperature to be
\[T' = T + \dfrac{5}{{100}}T\] which by adding and simplifying gives,
\[T' = \dfrac{{21}}{{20}}T\]
\[ \Rightarrow \dfrac{{T'}}{T} = \dfrac{{21}}{{20}}\]
Percentage error can be defined as
\[PI = \dfrac{{NV - OV}}{{OV}}\] where \[PI\] is the percentage increase of a particular value, \[NV\] is the new value, and \[OV\] is the old value.
Hence, percentage increase in the heat energy radiated would be defined as
\[PI = \dfrac{{H' - H}}{H} \times 100\% \]
Where
\[H' = \sigma AT{'^4}\]
Hence,
\[\dfrac{{H'}}{H} = \dfrac{{\sigma AT{'^4}}}{{\sigma A{T^4}}} = \dfrac{{T{'^4}}}{{{T^4}}} = {\left( {\dfrac{{T'}}{T}} \right)^4}\]
By inserting known values, we have
\[\dfrac{{H'}}{H} = {\left( {\dfrac{{21}}{{20}}} \right)^4}\]
Hence, by multiplying both sides by \[H\], we get
\[H' = {\left( {\dfrac{{21}}{{20}}} \right)^4}H\]
Going back to the definition, and inserting the value above into it we have
\[PI = \dfrac{{{{\left( {\dfrac{{21}}{{20}}} \right)}^4}H - H}}{H} \times 100\% \]
Dividing numerator and denominator by \[H\], we get
\[PI = \left[ {{{\left( {\dfrac{{21}}{{20}}} \right)}^4} - 1} \right] \times 100\% \]
\[PI = \left[ {{{\left( {1.05} \right)}^4} - 1} \right] \times 100\% \]
Hence, finding the fourth power, we get
\[PI = \left[ {1.22 - 1} \right] \times 100\% \]
Computing the above relation, we get
\[PI = 22\% \]
Hence, the correct option is B.
Note: For clarity; you might have seen a text where heat radiated from a blackbody is written as
\[H = \varepsilon \sigma A{T^4}\] where \[\varepsilon \] is the emissivity of the body. This equation and the one above are identical, this is because for a black body, the emissivity is equal to 1, and hence can drop out of the equation. This equation is more generally used for heat radiated by any type of body.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Oscillation Class 11 Notes: CBSE Physics Chapter 13

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE
