Answer
Verified
487.5k+ views
Hint: Scalar triple product can directly be applied on the given sides of parallelepiped. Drawing sketches for parallelepiped with given coterminous edges might lead to an error as they are given in the form of sum of two vectors.
Complete step-by-step answer:
Here, we have a parallelepiped with $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{c}+\overrightarrow{a}$ as their coterminous edges.
And coterminous edges mean the edges of a figure having or sharing the same boundaries.
Now, volume of a parallelepiped with their edges as let’s say $\overrightarrow{x},\overrightarrow{y}$ and $\overrightarrow{z}$ is defined as the area of the base times the height., $V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right]$,
\[\begin{align}
& \Rightarrow V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right] \\
& \Rightarrow V=\overrightarrow{x}\cdot \left( \overrightarrow{y}\times \overrightarrow{z} \right)=\left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}...\text{ }\left( 1 \right) \\
\end{align}\]
Which is also known as the scalar-triple product and it is further defined as,
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left| \begin{matrix}
{{z}_{1}} & {{z}_{2}} & {{z}_{3}} \\
{{x}_{1}} & {{x}_{2}} & {{x}_{3}} \\
{{y}_{1}} & {{y}_{2}} & {{y}_{3}} \\
\end{matrix} \right|...\text{ }\left( 2 \right)\]
where $\overrightarrow{x}=\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)$, $\overrightarrow{y}=\left( {{y}_{1}},{{y}_{2}},{{y}_{3}} \right)$ and \[\overrightarrow{z}=\left( {{z}_{1}},{{z}_{2}},{{z}_{3}} \right)\] defined in vector form.
Thus, from given conditions, we have $\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{y}=\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{z}=\overrightarrow{c}+\overrightarrow{a}$.
Substituting these values in equation (2), we get
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right)\]
Applying the product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)+\overrightarrow{b}\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, on applying properties of cross product of two parallel vectors, i.e.,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{b}=\left| \overrightarrow{b} \right|\left| \overrightarrow{b} \right|\sin {{0}^{\circ }}=0\]
Substituting this value in above equation, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, applying scalar product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}
\end{align}\]
Using properties of scalar triple product of vectors, we have
\[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]\]
And, \[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}=\left| \overrightarrow{a}\times \overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos {{90}^{\circ }}=0\]
Thus, from above equation, we have
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]
\end{align}\]
Also, from properties of scalar triple product, we have \[\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]\]
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right] \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]
\end{align}\]
Hence, the volume of parallelepiped = $V=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]$, thus option [C] is correct.
Note: As per question, the edges of parallelepiped are given as the sum of two vectors. So, calculation of scalar triple product for volume of parallelepiped becomes quite complex. Keeping the angle between the vectors in mind might ease the calculations, in a product.
Complete step-by-step answer:
Here, we have a parallelepiped with $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{c}+\overrightarrow{a}$ as their coterminous edges.
And coterminous edges mean the edges of a figure having or sharing the same boundaries.
Now, volume of a parallelepiped with their edges as let’s say $\overrightarrow{x},\overrightarrow{y}$ and $\overrightarrow{z}$ is defined as the area of the base times the height., $V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right]$,
\[\begin{align}
& \Rightarrow V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right] \\
& \Rightarrow V=\overrightarrow{x}\cdot \left( \overrightarrow{y}\times \overrightarrow{z} \right)=\left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}...\text{ }\left( 1 \right) \\
\end{align}\]
Which is also known as the scalar-triple product and it is further defined as,
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left| \begin{matrix}
{{z}_{1}} & {{z}_{2}} & {{z}_{3}} \\
{{x}_{1}} & {{x}_{2}} & {{x}_{3}} \\
{{y}_{1}} & {{y}_{2}} & {{y}_{3}} \\
\end{matrix} \right|...\text{ }\left( 2 \right)\]
where $\overrightarrow{x}=\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)$, $\overrightarrow{y}=\left( {{y}_{1}},{{y}_{2}},{{y}_{3}} \right)$ and \[\overrightarrow{z}=\left( {{z}_{1}},{{z}_{2}},{{z}_{3}} \right)\] defined in vector form.
Thus, from given conditions, we have $\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{y}=\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{z}=\overrightarrow{c}+\overrightarrow{a}$.
Substituting these values in equation (2), we get
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right)\]
Applying the product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)+\overrightarrow{b}\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, on applying properties of cross product of two parallel vectors, i.e.,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{b}=\left| \overrightarrow{b} \right|\left| \overrightarrow{b} \right|\sin {{0}^{\circ }}=0\]
Substituting this value in above equation, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, applying scalar product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}
\end{align}\]
Using properties of scalar triple product of vectors, we have
\[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]\]
And, \[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}=\left| \overrightarrow{a}\times \overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos {{90}^{\circ }}=0\]
Thus, from above equation, we have
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]
\end{align}\]
Also, from properties of scalar triple product, we have \[\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]\]
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right] \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]
\end{align}\]
Hence, the volume of parallelepiped = $V=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]$, thus option [C] is correct.
Note: As per question, the edges of parallelepiped are given as the sum of two vectors. So, calculation of scalar triple product for volume of parallelepiped becomes quite complex. Keeping the angle between the vectors in mind might ease the calculations, in a product.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE