Answer
Verified
454.8k+ views
Hint: We start solving the problem by assigning the variables for the vertices of the square and drawing all the given information. We then assume a point for the third vertex and use the fact that the lengths of all sides of a square are equal. Using this fact, we find the x coordinate for the other two points. We then find the length of the side of the square using the fact that the distance between the two opposite sides in a square is equal to the $\sqrt{2}$ times of the length of the side of the square. We use this length of the side and find the y coordinates of the other two vertices.
Complete step-by-step answer:
According to the problem, the two opposite vertices of a square are $\left( -1,2 \right)$ and $\left( 3,2 \right)$. We need to find the coordinates of the remaining two vertices. Let us assume the square be ABCD and the gives vertices as A and C.
Let us assume one of the other vertices is $\left( x,y \right)$. Let us draw the given information to get a better view.
We know that the length of the sides in a square are equal. From the figure, we can see that the length of the sides AB and BC are equal.
We know that the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$.
So, we have $AB=BC$. We square these lengths on both sides.
\[\Rightarrow A{{B}^{2}}=B{{C}^{2}}\].
\[\Rightarrow {{\left( \sqrt{{{\left( x-\left( -1 \right) \right)}^{2}}+{{\left( y-2 \right)}^{2}}} \right)}^{2}}={{\left( \sqrt{{{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow {{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}\].
We cancel the terms that were the same on both sides.
\[\Rightarrow {{\left( x+1 \right)}^{2}}={{\left( x-3 \right)}^{2}}\].
\[\Rightarrow {{x}^{2}}+2x+1={{x}^{2}}-6x+9\].
\[\Rightarrow 2x+6x=9-1\].
\[\Rightarrow 8x=8\].
\[\Rightarrow x=1\].
∴ The value of the x coordinate is 1.
We know that the distance between the two opposite sides in a square is equal to the $\sqrt{2}$ times of the length of the side of the square. Let us assume the length of the side of the square be a.
So, we have $\sqrt{2}a=\sqrt{{{\left( -1-3 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}}$.
$\Rightarrow \sqrt{2}a=\sqrt{{{\left( 4 \right)}^{2}}+0}$.
$\Rightarrow \sqrt{2}a=4$, as length cannot be negative.
$\Rightarrow a=2\sqrt{2}m$.
So, we have the length of the side of the square as $2\sqrt{2}m$.
So, we have $BC=2\sqrt{2}m$.
\[\Rightarrow \sqrt{{{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}}=2\sqrt{2}\].
\[\Rightarrow {{\left( 1-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( 2\sqrt{2} \right)}^{2}}\].
\[\Rightarrow {{\left( -2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}=8\].
\[\Rightarrow 4+{{\left( y-2 \right)}^{2}}=8\].
\[\Rightarrow {{\left( y-2 \right)}^{2}}=4\].
\[\Rightarrow \left( y-2 \right)=\pm 2\].
\[\Rightarrow y-2=2\] or $y-2=-2$.
\[\Rightarrow y=4\] or $y=0$.
So, the coordinates of the other two vertices of the square are $\left( 1,4 \right)$ and (1,0), as $\left( x,y \right)$ represents the locus of the point on the square the other value of y will be coordinate for other vertex.
The correct option for the given problem is (b).
So, the correct answer is “Option (b)”.
Note: We can see that the equation of the diagonal joining the points A and C is parallel to y-axis. We know that the diagonals are perpendicular to each other in square. So, the other diagonal should be parallel to x-axis. This tells us that the x-coordinate of both the points are the same. We can also check this using the midpoint of the diagonal as the diagonals bisect each other in a square.
Complete step-by-step answer:
According to the problem, the two opposite vertices of a square are $\left( -1,2 \right)$ and $\left( 3,2 \right)$. We need to find the coordinates of the remaining two vertices. Let us assume the square be ABCD and the gives vertices as A and C.
Let us assume one of the other vertices is $\left( x,y \right)$. Let us draw the given information to get a better view.
We know that the length of the sides in a square are equal. From the figure, we can see that the length of the sides AB and BC are equal.
We know that the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$.
So, we have $AB=BC$. We square these lengths on both sides.
\[\Rightarrow A{{B}^{2}}=B{{C}^{2}}\].
\[\Rightarrow {{\left( \sqrt{{{\left( x-\left( -1 \right) \right)}^{2}}+{{\left( y-2 \right)}^{2}}} \right)}^{2}}={{\left( \sqrt{{{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow {{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}\].
We cancel the terms that were the same on both sides.
\[\Rightarrow {{\left( x+1 \right)}^{2}}={{\left( x-3 \right)}^{2}}\].
\[\Rightarrow {{x}^{2}}+2x+1={{x}^{2}}-6x+9\].
\[\Rightarrow 2x+6x=9-1\].
\[\Rightarrow 8x=8\].
\[\Rightarrow x=1\].
∴ The value of the x coordinate is 1.
We know that the distance between the two opposite sides in a square is equal to the $\sqrt{2}$ times of the length of the side of the square. Let us assume the length of the side of the square be a.
So, we have $\sqrt{2}a=\sqrt{{{\left( -1-3 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}}$.
$\Rightarrow \sqrt{2}a=\sqrt{{{\left( 4 \right)}^{2}}+0}$.
$\Rightarrow \sqrt{2}a=4$, as length cannot be negative.
$\Rightarrow a=2\sqrt{2}m$.
So, we have the length of the side of the square as $2\sqrt{2}m$.
So, we have $BC=2\sqrt{2}m$.
\[\Rightarrow \sqrt{{{\left( x-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}}=2\sqrt{2}\].
\[\Rightarrow {{\left( 1-3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}={{\left( 2\sqrt{2} \right)}^{2}}\].
\[\Rightarrow {{\left( -2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}=8\].
\[\Rightarrow 4+{{\left( y-2 \right)}^{2}}=8\].
\[\Rightarrow {{\left( y-2 \right)}^{2}}=4\].
\[\Rightarrow \left( y-2 \right)=\pm 2\].
\[\Rightarrow y-2=2\] or $y-2=-2$.
\[\Rightarrow y=4\] or $y=0$.
So, the coordinates of the other two vertices of the square are $\left( 1,4 \right)$ and (1,0), as $\left( x,y \right)$ represents the locus of the point on the square the other value of y will be coordinate for other vertex.
The correct option for the given problem is (b).
So, the correct answer is “Option (b)”.
Note: We can see that the equation of the diagonal joining the points A and C is parallel to y-axis. We know that the diagonals are perpendicular to each other in square. So, the other diagonal should be parallel to x-axis. This tells us that the x-coordinate of both the points are the same. We can also check this using the midpoint of the diagonal as the diagonals bisect each other in a square.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE