Answer
Verified
471.3k+ views
Hint: To solve this question we will assume variables a, b, c to \[3{{i}^{2}},{{i}^{3}}\] & \[-{{i}^{4}}\] and we will use the identity that \[{{i}^{2}}=-1\]. Finally we will add them up to get the result.
Complete step-by-step solution:
We are given that the value of \[{{i}^{2}}=-1\], then the value of \[{{i}^{3}}\], \[{{i}^{4}}\] can be calculated separately.
Firstly we will calculate the value of \[{{i}^{3}}\] and \[{{i}^{4}}\], thus proceed to calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Then, Let \[a=3{{i}^{2}},b={{i}^{3}},c=-{{i}^{4}}\].
We have to calculate the value of a + b + c,
Because, \[{{i}^{2}}=-1\].
\[\begin{align}
& \Rightarrow 3{{i}^{2}}=\left( 3 \right)\left( -1 \right) \\
& \Rightarrow 3{{i}^{2}}=-3 \\
\end{align}\]
Therefore, $a = -3$ ------- (1)
Now consider b.
\[b={{i}^{3}}\]
We have, \[{{i}^{2}}=-1\].
Multiplying ‘i’ both sides of the above equation,
\[\Rightarrow {{i}^{3}}=-i\]
\[\Rightarrow b = -i \] ---------- (2)
Now compute, \[c=-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Multiplying, \[{{i}^{2}}=-1\] on both sides we have,
\[\begin{align}
& {{i}^{4}}=\left( -1 \right)\left( -1 \right) \\
& \Rightarrow {{i}^{4}}=1 \\
\end{align}\]
Now, \[c=-{{i}^{4}}=-1\].
Hence, $c = -1$ –------ (3)
Now a + b + c, using (1), (2) & (3) we have,
\[a+b+c=-3-i-1=-4-i\], which is option (a).
Therefore, \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=-4-i\], option (a) is correct.
Note: Another way to solve this question can be directly. Substituting, \[{{i}^{2}}=-1\], \[{{i}^{4}}=1\] & \[{{i}^{3}}=-i\] to get the result, then answer would come as \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=3\left( -1 \right)+\left( -i \right)-1=-4-i\], option (a).
Complete step-by-step solution:
We are given that the value of \[{{i}^{2}}=-1\], then the value of \[{{i}^{3}}\], \[{{i}^{4}}\] can be calculated separately.
Firstly we will calculate the value of \[{{i}^{3}}\] and \[{{i}^{4}}\], thus proceed to calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Then, Let \[a=3{{i}^{2}},b={{i}^{3}},c=-{{i}^{4}}\].
We have to calculate the value of a + b + c,
Because, \[{{i}^{2}}=-1\].
\[\begin{align}
& \Rightarrow 3{{i}^{2}}=\left( 3 \right)\left( -1 \right) \\
& \Rightarrow 3{{i}^{2}}=-3 \\
\end{align}\]
Therefore, $a = -3$ ------- (1)
Now consider b.
\[b={{i}^{3}}\]
We have, \[{{i}^{2}}=-1\].
Multiplying ‘i’ both sides of the above equation,
\[\Rightarrow {{i}^{3}}=-i\]
\[\Rightarrow b = -i \] ---------- (2)
Now compute, \[c=-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Multiplying, \[{{i}^{2}}=-1\] on both sides we have,
\[\begin{align}
& {{i}^{4}}=\left( -1 \right)\left( -1 \right) \\
& \Rightarrow {{i}^{4}}=1 \\
\end{align}\]
Now, \[c=-{{i}^{4}}=-1\].
Hence, $c = -1$ –------ (3)
Now a + b + c, using (1), (2) & (3) we have,
\[a+b+c=-3-i-1=-4-i\], which is option (a).
Therefore, \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=-4-i\], option (a) is correct.
Note: Another way to solve this question can be directly. Substituting, \[{{i}^{2}}=-1\], \[{{i}^{4}}=1\] & \[{{i}^{3}}=-i\] to get the result, then answer would come as \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=3\left( -1 \right)+\left( -i \right)-1=-4-i\], option (a).
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE