If the value of \[\tan \alpha =\dfrac{5}{12}\] , find all other trigonometric ratios.
Answer
Verified
497.7k+ views
Hint: In this question, we are given the value of \[\tan \alpha \] and we are asked to find all other trigonometric ratios. We have to find all the trigonometric ratios, step by step. We know the identity, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] . Using this relation, \[\sec \alpha \] can be obtained. And using the value of \[\sec \alpha \] , \[\cos \alpha \] can be calculated. We also know the identity, \[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]. Using this identity, \[\sin \alpha \] can be calculated. Now, we have the value of \[\sin \alpha \] and \[\cos \alpha \] . Using the value of \[\sin \alpha \] and \[\cos \alpha \] , \[\tan \alpha \] can be calculated. Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].
Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].
Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Write an application to the principal requesting five class 10 english CBSE
What are the public facilities provided by the government? Also explain each facility
What is Commercial Farming ? What are its types ? Explain them with Examples
Complete the sentence with the most appropriate word class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE