
If the value of \[\tan \alpha =\dfrac{5}{12}\] , find all other trigonometric ratios.
Answer
608.4k+ views
Hint: In this question, we are given the value of \[\tan \alpha \] and we are asked to find all other trigonometric ratios. We have to find all the trigonometric ratios, step by step. We know the identity, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] . Using this relation, \[\sec \alpha \] can be obtained. And using the value of \[\sec \alpha \] , \[\cos \alpha \] can be calculated. We also know the identity, \[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]. Using this identity, \[\sin \alpha \] can be calculated. Now, we have the value of \[\sin \alpha \] and \[\cos \alpha \] . Using the value of \[\sin \alpha \] and \[\cos \alpha \] , \[\tan \alpha \] can be calculated. Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].
Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].
Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

