Answer
Verified
468.9k+ views
Hint: To solve this question we will use various trigonometric identities. Some of them are as follows- \[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\].
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] and \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. First we will make proper substitution then we will use above identities to get the result.
Complete step-by-step answer:
Given that, \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\].
First of all we will simplify the given terms for that we will make certain assumptions.
Let \[x=\sin A\] and \[\sqrt{x}=\sin B\].
Now as, \[x=\sin A\].
And we have a trigonometric formula which is given as, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
Taking square root both sides we get,
\[\sin \theta =\sqrt{1-\cos \theta }\] - (1)
Now we have, \[x=\sin A\]
Using equation (1), we get
\[\sqrt{1-{{x}^{2}}}=\cos A\]
This is so as, \[x=\sin A\]
Squaring both sides \[\Rightarrow {{x}^{2}}={{\sin }^{2}}A\].
\[\Rightarrow 1-{{x}^{2}}=1-{{\sin }^{2}}A\]
And taking under root we have,
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\sqrt{1-{{\sin }^{2}}A}\]
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\cos A\] - (2)
Similarly we have, \[\sqrt{x}=\sin B\].
Again using equation (i) we have,
\[\sqrt{{{\left( 1-\sqrt{x} \right)}^{2}}}=\cos B\]
\[\Rightarrow \sqrt{1-x}=\cos B\] - (3)
Finally we will use obtained values in the value of y.
Substituting the value of equation (2) and (3) in value of y we get;
\[y={{\sin }^{-1}}\left( \sin A\cos B+\cos A\sin B \right)\]
Now we will use trigonometric identity given as,
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\]
Using this identity in value of y we get;
\[\begin{align}
& y={{\sin }^{-1}}\left( \sin \left( A+B \right) \right) \\
& \Rightarrow y=\left( A+B \right) \\
\end{align}\]
Now we had, \[x=\sin A\].
Taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}x=A\].
And we had \[\sqrt{x}=\sin B\].
Again taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}\sqrt{x}=B\].
Substituting the value of A & B in y we get,
\[y={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x}\]
Now finally we will differentiate the obtained values. For that we will the formula of differentiation of \[{{\sin }^{-1}}x\] which is \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Using this formula and differentiating y with respect to x we get,
\[\dfrac{d}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} \right)\]
Using, \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\] we get,
Applying chain rule of differentiation we get,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x}\sqrt{1-\left( x \right)}}\]
Multiplying \[\sqrt{x}\] inside we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
Hence the value of \[\dfrac{dy}{dx}\] is \[\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\],
So, the correct answer is “Option C”.
Note: Students can get confused at the point where we have to differentiate \[{{\sin }^{-1}}\sqrt{x}\]. Always remember that we apply chain rule of differentiate in such cases,
The derivative is done as follows –
\[\begin{align}
& \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}\dfrac{d}{dx}\sqrt{x} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-x}}\dfrac{1}{2\sqrt{x}} \\
\end{align}\]
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] and \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. First we will make proper substitution then we will use above identities to get the result.
Complete step-by-step answer:
Given that, \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\].
First of all we will simplify the given terms for that we will make certain assumptions.
Let \[x=\sin A\] and \[\sqrt{x}=\sin B\].
Now as, \[x=\sin A\].
And we have a trigonometric formula which is given as, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
Taking square root both sides we get,
\[\sin \theta =\sqrt{1-\cos \theta }\] - (1)
Now we have, \[x=\sin A\]
Using equation (1), we get
\[\sqrt{1-{{x}^{2}}}=\cos A\]
This is so as, \[x=\sin A\]
Squaring both sides \[\Rightarrow {{x}^{2}}={{\sin }^{2}}A\].
\[\Rightarrow 1-{{x}^{2}}=1-{{\sin }^{2}}A\]
And taking under root we have,
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\sqrt{1-{{\sin }^{2}}A}\]
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\cos A\] - (2)
Similarly we have, \[\sqrt{x}=\sin B\].
Again using equation (i) we have,
\[\sqrt{{{\left( 1-\sqrt{x} \right)}^{2}}}=\cos B\]
\[\Rightarrow \sqrt{1-x}=\cos B\] - (3)
Finally we will use obtained values in the value of y.
Substituting the value of equation (2) and (3) in value of y we get;
\[y={{\sin }^{-1}}\left( \sin A\cos B+\cos A\sin B \right)\]
Now we will use trigonometric identity given as,
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\]
Using this identity in value of y we get;
\[\begin{align}
& y={{\sin }^{-1}}\left( \sin \left( A+B \right) \right) \\
& \Rightarrow y=\left( A+B \right) \\
\end{align}\]
Now we had, \[x=\sin A\].
Taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}x=A\].
And we had \[\sqrt{x}=\sin B\].
Again taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}\sqrt{x}=B\].
Substituting the value of A & B in y we get,
\[y={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x}\]
Now finally we will differentiate the obtained values. For that we will the formula of differentiation of \[{{\sin }^{-1}}x\] which is \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Using this formula and differentiating y with respect to x we get,
\[\dfrac{d}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} \right)\]
Using, \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\] we get,
Applying chain rule of differentiation we get,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x}\sqrt{1-\left( x \right)}}\]
Multiplying \[\sqrt{x}\] inside we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
Hence the value of \[\dfrac{dy}{dx}\] is \[\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\],
So, the correct answer is “Option C”.
Note: Students can get confused at the point where we have to differentiate \[{{\sin }^{-1}}\sqrt{x}\]. Always remember that we apply chain rule of differentiate in such cases,
The derivative is done as follows –
\[\begin{align}
& \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}\dfrac{d}{dx}\sqrt{x} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-x}}\dfrac{1}{2\sqrt{x}} \\
\end{align}\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers