
If the values a + b + c = 8, ab + bc + ca = 17 and abc = 10 are given, then find the value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$?
(a) 94
(b) 84
(c) 68
(d) 88
Answer
592.8k+ views
Hint: We start solving the problem by assuming the value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$ as ‘d’. We now multiply each term of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$ present in brackets. After multiplication we substitute values given in the problem to get the required result.
Complete step by step answer:
We have given values of a + b + c, ab + bc + ca and abc are 8, 17 and 10. We need to find the value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$.
Let us first multiply all the given terms in $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$. Let us assume this value is ‘d’.
So, $d=\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 2.2+2.a+2.b+a.b \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 4+2a+2b+ab \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 4.2+4.c+2a.2+2a.c+2b.2+2b.c+ab.2+ab.c \right)$.
$\Rightarrow d=8+4c+4a+2ac+4b+2bc+2ab+abc$.
$\Rightarrow d=8+4a+4b+4c+2ab+2bc+2ca+abc$.
$\Rightarrow d=8+4.\left( a+b+c \right)+2.\left( ab+bc+ca \right)+abc$ ---(1).
We substitute the values a + b + c = 8, ab + bc + ca = 17 and abc = 10 in the equation (1).
d = 8 + 4(8) + 2(17) + 10.
d = 8 + 32 + 34 + 10.
d = 84.
∴ The value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)=84$.
So, the correct answer is “Option B”.
Note: Alternatively, we can calculate the values of ‘a’, ‘b’ and ‘c’ to substitute in the given equation $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$. We should not make any calculation mistakes while solving this problem to get the accurate result. Similarly, we can expect to find the polynomial having the roots ‘a’, ‘b’ and ‘c’.
Complete step by step answer:
We have given values of a + b + c, ab + bc + ca and abc are 8, 17 and 10. We need to find the value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$.
Let us first multiply all the given terms in $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$. Let us assume this value is ‘d’.
So, $d=\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 2.2+2.a+2.b+a.b \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 4+2a+2b+ab \right).\left( 2+c \right)$.
$\Rightarrow d=\left( 4.2+4.c+2a.2+2a.c+2b.2+2b.c+ab.2+ab.c \right)$.
$\Rightarrow d=8+4c+4a+2ac+4b+2bc+2ab+abc$.
$\Rightarrow d=8+4a+4b+4c+2ab+2bc+2ca+abc$.
$\Rightarrow d=8+4.\left( a+b+c \right)+2.\left( ab+bc+ca \right)+abc$ ---(1).
We substitute the values a + b + c = 8, ab + bc + ca = 17 and abc = 10 in the equation (1).
d = 8 + 4(8) + 2(17) + 10.
d = 8 + 32 + 34 + 10.
d = 84.
∴ The value of $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)=84$.
So, the correct answer is “Option B”.
Note: Alternatively, we can calculate the values of ‘a’, ‘b’ and ‘c’ to substitute in the given equation $\left( 2+a \right).\left( 2+b \right).\left( 2+c \right)$. We should not make any calculation mistakes while solving this problem to get the accurate result. Similarly, we can expect to find the polynomial having the roots ‘a’, ‘b’ and ‘c’.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

