Answer
Verified
469.5k+ views
Hint: If the value corresponding to the particular value of angle is not known, then the angle should be broken down into 2 such angles whose values are already known. Then the difference or sum of angle formula should be used. The value of $\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}$ and $\tan \left( {x + y} \right) =\dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}$. Where x and y are those angles, whose values are known for the tangent function.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Complete step by step solution:$\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4}$ ,
Where, [ $\dfrac{\pi }{{12}} = \dfrac{\pi }{{12}} \times \dfrac{{{{180}^o}}}{\pi } = {15^o}$ , $\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^o}}}{\pi } = {60^o}$ and $\dfrac{\pi }{4} = \dfrac{\pi }{4} \times \dfrac{{{{180}^o}}}{\pi } = {45^o}$]
To convert angle given into degree from radian multiply by$\dfrac{{{{180}^o}}}{\pi }$ .
Now we know the tangent difference identity formula as.
$\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x.\tan y}}......(1)$
Here, $x = \frac{\pi }{3}$ and $y = \frac{\pi }{4}$
Substitute the value in equation (1),
\[\tan \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{3}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{3}} \right)\tan \left( {\dfrac{\pi }{4}} \right)}}......(2)\]
The value of $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $ and $\tan \left( {\dfrac{\pi }{4}} \right) = 1$ , substitute it in equation (2)
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{1 + \left( {\sqrt 3 } \right)\left( 1 \right)}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\ $
It should be simplified by rationalizing it, multiply numerator and denominator by $\left( {\sqrt 3 - 1} \right)$
\[ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right)}} \\ \]
The formula for ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ \tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {\sqrt 3 } \right)\left( 1 \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{3 + 1 - 2\sqrt 3 }}{{3 - 1}} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan \left( {\dfrac{\pi }{{12}}} \right) = 2 - \sqrt 3 \\ $
The value of ${\tan ^2}\left( {\dfrac{\pi }{{12}}} \right) = {\left( {2 - \sqrt 3 } \right)^2}$
It can be expanded by \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[ {\left( {2 - \sqrt 3 } \right)^2} = {\left( 2 \right)^2} + {\left( {\sqrt 3 } \right)^2} - 2\left( 2 \right)\left( {\sqrt 3 } \right) \\
{\left( {2 - \sqrt 3 } \right)^2} = 4 + 3 - 4\sqrt 3 \\
{\left( {2 - \sqrt 3 } \right)^2} = 7 - 4\sqrt 3 \\ \]
The expression is given as
$E = {\tan ^4}\dfrac{\pi }{{12}} - 14{\tan ^2}\left( {\dfrac{\pi }{4}} \right)$
Take out ${\tan ^2}\dfrac{\pi }{4}$ common
$E = {\tan ^2}\left( {\dfrac{\pi }{{12}}} \right)\left[ {{{\tan }^2}\dfrac{\pi }{{12}} - 14} \right]......(4)$
Substitute the value of ${\tan ^2}\dfrac{\pi }{{12}}$ in equation (3),
$ E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right) \\
E = - \left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right) \\
E = - \left( {49 - 48} \right) \\
E = - 1 \\ $
Hence, the correct option is (A).
Note: The angle given in radian may be converted into degree and evaluated based on the convenience.
For simplicity of calculation the angle should be broken down, based on the formula available in the form of sum and difference of tangent of angle.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE