Answer
Verified
497.4k+ views
Hint: Here, we will be finding the value of angle $\theta $ from the given equation and then we will be using the values like $\tan {45^0} = 1$ and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\] given in the trigonometric table in order to obtain the value of the given expression.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers