Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If θ is an acute angle such that cosθ=35, then the value of sinθtanθ12tan2θ is:

a)16625
b)136
c)3160
d)1603

Answer
VerifiedVerified
517.2k+ views
like imagedislike image

Hint: Here, we have to apply the formula that cosθ=Adjacent sideHypotnuse. Since, the adjacent side and hypotenuse are given, we have to find the opposite side by the Pythagoras theorem, where,


(Hypotnuse)2=(Opposite side)2+(Adjacent side)2. Now, we will get sinθ and tanθ and apply the values in sinθtanθ12tan2θ.


Complete step-by-step answer:

Here, we are given that θ is an acute angle such that cosθ=35.


Now, we have to find the value of sinθtanθ12tan2θ.


We know that,


cosθ=Adjacent sideHypotnuse


sinθ=Opposite sideHypotnuse


tanθ=Opposite sideAdjacent side


Hence, from the given data we can say that,


Adjacent side = 3


Hypotnuse = 5


Consider the following figure:


seo images


Hence, by Pythagoras theorem we have:


(Hypotnuse)2=(Opposite side)2+(Adjacent side)2


From the figure we can say that,


Opposite side = AC


Adjacent side = AB


Hypotnuse = BC


Hence, we have,


(BC)2=(AC)2+(AB)2


Now, we have to find the opposite side, AC. For that take (AC)2 to the left side.


Now, we can write:


$\begin{align}


  & {{(AC)}^{2}}={{(BC)}^{2}}-{{(AB)}^{2}} \


 & \Rightarrow {{(AC)}^{2}}={{5}^{2}}-{{3}^{2}} \


 & \Rightarrow {{(AC)}^{2}}=25-9 \


 & \Rightarrow {{(AC)}^{2}}=16 \


\end{align}$


Next. By taking square root on both the sides we get:


$\begin{align}


  & AC=\sqrt{16} \


 & \Rightarrow AC=4 \


\end{align}$


Hence, we can write:


$\begin{align}


  & \sin \theta =\dfrac{4}{5} \


 & \tan \theta =\dfrac{4}{3} \


\end{align}$


Next, we can find sinθtanθ12tan2θ.


$\begin{align}


  & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{4}{5}\times \dfrac{4}{3}-1}{2\times {{\left( \dfrac{4}{3} \right)}^{2}}} \


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta

}=\dfrac{\dfrac{16}{15}-1}{2\times \dfrac{16}{9}} \


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{16}{15}-1}{\dfrac{32}{9}} \


\end{align}$


Now, by taking LCM, we obtain:


 $\begin{align}


  & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{16-15}{15}}{\dfrac{32}{9}} \


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{1}{15}}{\dfrac{32}{9}} \


\end{align}$


We know that,

abcd=ab×dc


Hence, we can write,


sinθtanθ12tan2θ=115×932


Now, by cancellation, we obtain:


$\begin{align}


  & \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }=\dfrac{1}{5}\times \dfrac{3}{32} \


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }=\dfrac{3}{160} \


\end{align}$


Therefore, we can say that the value of $\dfrac{\sin \theta \tan \theta -1}{2{{\tan


}^{2}}\theta }=\dfrac{3}{160}$.


So, the correct answer for this question is option (c).



Note: Here, you should be aware of the basic trigonometric formulas, especially the formulas regarding sinθ,cosθ and tanθ. If you know these three basic formulas then, you can find the other three trigonometric ratios from these three.



0 views
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy