Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $\theta$ is an acute angle such that $\cos \theta =\dfrac{3}{5}$, then the value of $\dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }$ is:

a)$\dfrac{16}{625}$
b)$\dfrac{1}{36}$
c)$\dfrac{3}{160}$
d)$\dfrac{160}{3}$

Answer
VerifiedVerified
491.1k+ views

Hint: Here, we have to apply the formula that $\cos \theta =\dfrac{Adjacent\text{ }side}{Hypotnuse}$. Since, the adjacent side and hypotenuse are given, we have to find the opposite side by the Pythagoras theorem, where,


${{(Hypotnuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}}$. Now, we will get $\sin \theta $ and $\tan \theta $ and apply the values in $\dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }$.


Complete step-by-step answer:

Here, we are given that $\theta $ is an acute angle such that $\cos \theta =\dfrac{3}{5}$.


Now, we have to find the value of $\dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }$.


We know that,


$\cos \theta =\dfrac{Adjacent\text{ }side}{Hypotnuse}$


$\sin \theta =\dfrac{Opposite\text{ }side}{Hypotnuse}$


$\tan \theta =\dfrac{Opposite\text{ }side}{Adjacent\text{ }side}$


Hence, from the given data we can say that,


Adjacent side = 3


Hypotnuse = 5


Consider the following figure:


seo images


Hence, by Pythagoras theorem we have:


${{(Hypotnuse)}^{2}}={{(Opposite\text{ }side)}^{2}}+{{(Adjacent\text{ }side)}^{2}}$


From the figure we can say that,


Opposite side = AC


Adjacent side = AB


Hypotnuse = BC


Hence, we have,


${{(BC)}^{2}}={{(AC)}^{2}}+{{(AB)}^{2}}$


Now, we have to find the opposite side, AC. For that take ${{(AC)}^{2}}$ to the left side.


Now, we can write:


$\begin{align}


  & {{(AC)}^{2}}={{(BC)}^{2}}-{{(AB)}^{2}} \\


 & \Rightarrow {{(AC)}^{2}}={{5}^{2}}-{{3}^{2}} \\


 & \Rightarrow {{(AC)}^{2}}=25-9 \\


 & \Rightarrow {{(AC)}^{2}}=16 \\


\end{align}$


Next. By taking square root on both the sides we get:


$\begin{align}


  & AC=\sqrt{16} \\


 & \Rightarrow AC=4 \\


\end{align}$


Hence, we can write:


$\begin{align}


  & \sin \theta =\dfrac{4}{5} \\


 & \tan \theta =\dfrac{4}{3} \\


\end{align}$


Next, we can find $\dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }$.


$\begin{align}


  & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{4}{5}\times \dfrac{4}{3}-1}{2\times {{\left( \dfrac{4}{3} \right)}^{2}}} \\


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta

}=\dfrac{\dfrac{16}{15}-1}{2\times \dfrac{16}{9}} \\


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{16}{15}-1}{\dfrac{32}{9}} \\


\end{align}$


Now, by taking LCM, we obtain:


 $\begin{align}


  & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{16-15}{15}}{\dfrac{32}{9}} \\


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta


}=\dfrac{\dfrac{1}{15}}{\dfrac{32}{9}} \\


\end{align}$


We know that,

$\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}$


Hence, we can write,


$\dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }=\dfrac{1}{15}\times \dfrac{9}{32}$


Now, by cancellation, we obtain:


$\begin{align}


  & \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }=\dfrac{1}{5}\times \dfrac{3}{32} \\


 & \Rightarrow \dfrac{\sin \theta \tan \theta -1}{2{{\tan }^{2}}\theta }=\dfrac{3}{160} \\


\end{align}$


Therefore, we can say that the value of $\dfrac{\sin \theta \tan \theta -1}{2{{\tan


}^{2}}\theta }=\dfrac{3}{160}$.


So, the correct answer for this question is option (c).



Note: Here, you should be aware of the basic trigonometric formulas, especially the formulas regarding $\sin \theta ,\cos \theta $ and $\tan \theta $. If you know these three basic formulas then, you can find the other three trigonometric ratios from these three.