
How do you simplify ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ ?
Answer
533.1k+ views
Hint: Since, we have to find the simplified value of the given question ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ , we will follow the following way of solution method as:
$\Rightarrow {{\left( \dfrac{n}{m} \right)}^{\left( -\dfrac{a}{b} \right)}}={{\left( \dfrac{1}{{}^{n}\!\!\diagup\!\!{}_{m}\;} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( 1\times \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}$
Since, the power of the number is also in fraction, so we will use the solution method as:
$\Rightarrow {{\left( \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( \dfrac{m}{n} \right)}^{\left( a\times \dfrac{1}{b} \right)}}={{\left[ {{\left( \dfrac{m}{n} \right)}^{\dfrac{1}{b}}} \right]}^{a}}$
Now, we will solve the above term so that we can get the simplified value of the question.
Complete step by step solution:
Since, the question is given as ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ . Here the both the base term and the power of the number are fraction. Firstly, we will convert the power term from negative to positive as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{1}{{}^{8}\!\!\diagup\!\!{}_{27}\;} \right)}^{\dfrac{2}{3}}}$
We can write the above equation as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( 1\div \dfrac{8}{27} \right)}^{\left( \dfrac{2}{3} \right)}}$
If the dividend is in fraction, we can chance the place of nominator and denominator as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( 1\times \dfrac{27}{8} \right)}^{\left( \dfrac{2}{3} \right)}}$
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{27}{8} \right)}^{\left( \dfrac{2}{3} \right)}}$
Here, we can expand the above number as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{27}{8} \right)}^{\left( 2\times \dfrac{1}{3} \right)}}$
Now, we can write the above term as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ {{\left( \dfrac{27}{8} \right)}^{\left( \dfrac{1}{3} \right)}} \right]}^{2}}$
Since, $8$ and $27$ can be written as ${{2}^{3}}$ and ${{3}^{3}}$respectively. So, The above equation can be written as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ {{\left( \dfrac{{{3}^{3}}}{{{2}^{3}}} \right)}^{\left( \dfrac{1}{3} \right)}} \right]}^{2}}$
Now, the power of the term is in fraction and the fraction is $\dfrac{1}{3}$ that means we will have to find the cube root of the base. The power of the power can be written in the term of multiplication. So, the above term can be written as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ \left( \dfrac{{{3}^{3\times \dfrac{1}{3}}}}{{{2}^{3\times \dfrac{1}{3}}}} \right) \right]}^{2}}$
Now, after solving the power, we will get the value as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ \left( \dfrac{3}{2} \right) \right]}^{2}}$
Here, we will calculate the power of above term as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}=\left( \dfrac{{{3}^{2}}}{{{2}^{2}}} \right)$
Since, the square of $3$ is $9$ and the square of $2$ is 4. So, the above term will become as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}=\left( \dfrac{9}{4} \right)$
Since, the simplified value of the given question is a fraction, we can convert it in decimal also as:
\[\Rightarrow \left( \dfrac{9}{4} \right)=9\div 4=2.25\]
Hence, the simplified value of given question ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ is \[\left( \dfrac{9}{4} \right)\] or \[2.25\] .
Note: For finding the value of the given question ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$, we will have to note that the following points as:
$\Rightarrow $ If the given power is negative, change the power from negative to positive.
$\Rightarrow $ If the power is in fraction as $\dfrac{n}{m}$ , we don’t need to convert the power in decimal. Otherwise we will not be able to simplify the base number.
$\Rightarrow $ The numerator $n$ is number of multiplication of base number to itself and denominator tells to take ${{\text{m}}^{\text{th}}}$ root of the base number.
$\Rightarrow {{\left( \dfrac{n}{m} \right)}^{\left( -\dfrac{a}{b} \right)}}={{\left( \dfrac{1}{{}^{n}\!\!\diagup\!\!{}_{m}\;} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( 1\times \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}$
Since, the power of the number is also in fraction, so we will use the solution method as:
$\Rightarrow {{\left( \dfrac{m}{n} \right)}^{\left( \dfrac{a}{b} \right)}}={{\left( \dfrac{m}{n} \right)}^{\left( a\times \dfrac{1}{b} \right)}}={{\left[ {{\left( \dfrac{m}{n} \right)}^{\dfrac{1}{b}}} \right]}^{a}}$
Now, we will solve the above term so that we can get the simplified value of the question.
Complete step by step solution:
Since, the question is given as ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ . Here the both the base term and the power of the number are fraction. Firstly, we will convert the power term from negative to positive as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{1}{{}^{8}\!\!\diagup\!\!{}_{27}\;} \right)}^{\dfrac{2}{3}}}$
We can write the above equation as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( 1\div \dfrac{8}{27} \right)}^{\left( \dfrac{2}{3} \right)}}$
If the dividend is in fraction, we can chance the place of nominator and denominator as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( 1\times \dfrac{27}{8} \right)}^{\left( \dfrac{2}{3} \right)}}$
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{27}{8} \right)}^{\left( \dfrac{2}{3} \right)}}$
Here, we can expand the above number as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left( \dfrac{27}{8} \right)}^{\left( 2\times \dfrac{1}{3} \right)}}$
Now, we can write the above term as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ {{\left( \dfrac{27}{8} \right)}^{\left( \dfrac{1}{3} \right)}} \right]}^{2}}$
Since, $8$ and $27$ can be written as ${{2}^{3}}$ and ${{3}^{3}}$respectively. So, The above equation can be written as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ {{\left( \dfrac{{{3}^{3}}}{{{2}^{3}}} \right)}^{\left( \dfrac{1}{3} \right)}} \right]}^{2}}$
Now, the power of the term is in fraction and the fraction is $\dfrac{1}{3}$ that means we will have to find the cube root of the base. The power of the power can be written in the term of multiplication. So, the above term can be written as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ \left( \dfrac{{{3}^{3\times \dfrac{1}{3}}}}{{{2}^{3\times \dfrac{1}{3}}}} \right) \right]}^{2}}$
Now, after solving the power, we will get the value as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}={{\left[ \left( \dfrac{3}{2} \right) \right]}^{2}}$
Here, we will calculate the power of above term as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}=\left( \dfrac{{{3}^{2}}}{{{2}^{2}}} \right)$
Since, the square of $3$ is $9$ and the square of $2$ is 4. So, the above term will become as:
$\Rightarrow {{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}=\left( \dfrac{9}{4} \right)$
Since, the simplified value of the given question is a fraction, we can convert it in decimal also as:
\[\Rightarrow \left( \dfrac{9}{4} \right)=9\div 4=2.25\]
Hence, the simplified value of given question ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$ is \[\left( \dfrac{9}{4} \right)\] or \[2.25\] .
Note: For finding the value of the given question ${{\left( \dfrac{8}{27} \right)}^{\left( -\dfrac{2}{3} \right)}}$, we will have to note that the following points as:
$\Rightarrow $ If the given power is negative, change the power from negative to positive.
$\Rightarrow $ If the power is in fraction as $\dfrac{n}{m}$ , we don’t need to convert the power in decimal. Otherwise we will not be able to simplify the base number.
$\Rightarrow $ The numerator $n$ is number of multiplication of base number to itself and denominator tells to take ${{\text{m}}^{\text{th}}}$ root of the base number.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Who wrote the novel "Crime and Punishment"?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


