Answer
Verified
468.6k+ views
Hint: We have given $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$. We have to find the relation between the roots.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers