If \[\vec a,\,\vec b,\,\vec c\] are three non-coplanar non-zero vectors and \[\vec r\] is any vector in space, then\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\] is equal to
A.\[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
B.\[3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
C.\[\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
D.\[4\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Answer
Verified
463.5k+ views
Hint: Here we will apply the identity of the cross multiplication of the vectors to expand the given equation in terms of the matrices of the given vectors. Then we will simplify that equation to get the required answer.
Complete step-by-step answer:
Given equation is \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\]………………..\[\left( 1 \right)\]
We will use the identity of the vectors, \[\vec a \times \left( {\vec b \times \vec c} \right) = \left( {\vec a\, \cdot \vec c} \right)\vec b - \left( {\vec a\, \cdot \vec b} \right)\vec c\] to simplify this equation..
So, firstly we will take the first term from the equation \[\left( 1 \right)\] i.e. \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right)\] and we will apply the identity on it.
Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c\]
We know that \[\left( {\vec a \times \vec b} \right)\vec c\]can be written in terms of the matrix form as\[\left[ {\vec a\,\vec b\,\vec c} \right]\]i.e. \[\left( {\vec a \times \vec b} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\]. Therefore, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c\]
Similarly, we will find this for the second terms of the equation \[1\] i.e. \[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right)\].
\[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) = \left( {\left( {\vec b \times \vec c} \right)\vec a} \right)\vec r - \left( {\left( {\vec b \times \vec c} \right)\vec r} \right)\vec a = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a\]
Again, we will find this for the third terms of the equation \[1\] i.e. \[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\].
\[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left( {\vec c \times \vec a} \right)\vec b} \right)\vec r - \left( {\left( {\vec c \times \vec a} \right)\vec r} \right)\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
Now we will find the sum of all the terms of the equation \[\left( 1 \right)\]. Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
Now by solving this, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left( {\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
We know that the value of \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\].
Substituting \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] in the above equation, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec c} \right]\vec r = 2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Hence, \[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] is the value of the given equation.
So, option A is the correct option.
Note: Vector is the geometric object that has both the magnitude and the direction of an object. So while calculating the equation of a line vector we should know that it is equal to the difference between the final point vector and the starting point vector of that line. Vectors have three components i.e. \[x\] component, \[y\] component and \[z\] component and all the three components of the vectors are perpendicular to each other. Unit vector is a vector which has a magnitude of 1 unit and zero vector is a vector which has a magnitude of 0 unit.
Complete step-by-step answer:
Given equation is \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\]………………..\[\left( 1 \right)\]
We will use the identity of the vectors, \[\vec a \times \left( {\vec b \times \vec c} \right) = \left( {\vec a\, \cdot \vec c} \right)\vec b - \left( {\vec a\, \cdot \vec b} \right)\vec c\] to simplify this equation..
So, firstly we will take the first term from the equation \[\left( 1 \right)\] i.e. \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right)\] and we will apply the identity on it.
Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c\]
We know that \[\left( {\vec a \times \vec b} \right)\vec c\]can be written in terms of the matrix form as\[\left[ {\vec a\,\vec b\,\vec c} \right]\]i.e. \[\left( {\vec a \times \vec b} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\]. Therefore, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c\]
Similarly, we will find this for the second terms of the equation \[1\] i.e. \[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right)\].
\[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) = \left( {\left( {\vec b \times \vec c} \right)\vec a} \right)\vec r - \left( {\left( {\vec b \times \vec c} \right)\vec r} \right)\vec a = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a\]
Again, we will find this for the third terms of the equation \[1\] i.e. \[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\].
\[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left( {\vec c \times \vec a} \right)\vec b} \right)\vec r - \left( {\left( {\vec c \times \vec a} \right)\vec r} \right)\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
Now we will find the sum of all the terms of the equation \[\left( 1 \right)\]. Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
Now by solving this, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left( {\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
We know that the value of \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\].
Substituting \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] in the above equation, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec c} \right]\vec r = 2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Hence, \[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] is the value of the given equation.
So, option A is the correct option.
Note: Vector is the geometric object that has both the magnitude and the direction of an object. So while calculating the equation of a line vector we should know that it is equal to the difference between the final point vector and the starting point vector of that line. Vectors have three components i.e. \[x\] component, \[y\] component and \[z\] component and all the three components of the vectors are perpendicular to each other. Unit vector is a vector which has a magnitude of 1 unit and zero vector is a vector which has a magnitude of 0 unit.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE