If we consider only the principal values of the inverse trigonometric functions, then the value of \[\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]\] is: -
(a) \[\dfrac{\sqrt{29}}{3}\]
(b) \[\dfrac{29}{3}\]
(c) \[\dfrac{\sqrt{3}}{29}\]
(d) \[\dfrac{-3}{5}\]
Answer
Verified
466.5k+ views
Hint: Convert \[{{\cos }^{-1}}\dfrac{1}{\sqrt{2}}\] into \[{{\tan }^{-1}}\] function by assuming 1 as base and \[\sqrt{2}\] as hypotenuse. Also convert \[{{\sin }^{-1}}\dfrac{4}{\sqrt{17}}\] into \[{{\tan }^{-1}}\] function by assuming 4 as perpendicular and \[\sqrt{17}\] as hypotenuse. Use Pythagoras theorem given by: - \[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\] for the above two process. Here, h = hypotenuse, p = perpendicular and b = base. Now, apply the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\] to simplify. Finally apply the rule: - \[\tan \left( {{\tan }^{-1}}x \right)=x\] to get the answer.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow E=\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]\]
Let us consider \[{{\cos }^{-1}}\] and \[{{\sin }^{-1}}\] functions into \[{{\tan }^{-1}}\] function.
We know that, \[\cos \theta \] = $\dfrac{\text{Base}}{\text{Hypotenuse}}$ \[\Rightarrow \theta ={{\cos }^{-1}}\]$(\dfrac{\text{Base}}{\text{Hypotenuse}})$
On comparing the above relation with \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\], we get, base = 1, hypotenuse = \[\sqrt{2}\].
Therefore, applying Pythagoras theorem, we get,
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\], where h = hypotenuse, p = perpendicular and b = base.
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2} \right)}^{2}}={{p}^{2}}+{{1}^{2}} \\
& \Rightarrow 2={{p}^{2}}+1 \\
& \Rightarrow {{p}^{2}}=1 \\
& \Rightarrow p=1 \\
\end{align}\]
Hence, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1\].
Now, we know that, \[\sin \theta =\dfrac{p}{h}\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{p}{h} \right)\].
On comparing the above relation with \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\], we have, p = 4, h = \[\sqrt{17}\].
Therefore, applying Pythagoras theorem, we get,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( \sqrt{17} \right)}^{2}}={{4}^{2}}+{{b}^{2}} \\
& \Rightarrow 17=16+{{b}^{2}} \\
& \Rightarrow {{b}^{2}}=1 \\
& \Rightarrow b=1 \\
\end{align}\]
Hence, \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{4}{1} \right)={{\tan }^{-1}}4\].
So, the expression becomes: -
\[\Rightarrow E=\tan \left[ {{\tan }^{-1}}1-{{\tan }^{-1}}4 \right]\]
Applying the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\], we get,
\[\begin{align}
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{1-4}{1+1\times 4} \right) \right] \\
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{-3}{5} \right) \right] \\
\end{align}\]
Finally using the identity, \[\tan \left[ {{\tan }^{-1}}x \right]=x\], we have,
\[\Rightarrow E=\dfrac{-3}{5}\]
Hence, option (d) is the correct answer.
Note: One may note that we can decrease the steps of solution a little by directly saying that \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}1\]. Here, we knew that \[{{\cos }^{-1}}\left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. So, \[\dfrac{\pi }{4}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. Hence, the angle was \[\dfrac{\pi }{4}\] and \[\tan \left( \dfrac{\pi }{4} \right)=1\]. So, we did not required Pythagoras theorem here. But for the conversion of \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\] into \[{{\tan }^{-1}}\] function we needed Pythagoras theorem because we don’t know any particular angle for that.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow E=\tan \left[ {{\cos }^{-1}}\dfrac{1}{\sqrt{2}}-{{\sin }^{-1}}\dfrac{4}{\sqrt{17}} \right]\]
Let us consider \[{{\cos }^{-1}}\] and \[{{\sin }^{-1}}\] functions into \[{{\tan }^{-1}}\] function.
We know that, \[\cos \theta \] = $\dfrac{\text{Base}}{\text{Hypotenuse}}$ \[\Rightarrow \theta ={{\cos }^{-1}}\]$(\dfrac{\text{Base}}{\text{Hypotenuse}})$
On comparing the above relation with \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\], we get, base = 1, hypotenuse = \[\sqrt{2}\].
Therefore, applying Pythagoras theorem, we get,
\[{{h}^{2}}={{p}^{2}}+{{b}^{2}}\], where h = hypotenuse, p = perpendicular and b = base.
\[\begin{align}
& \Rightarrow {{\left( \sqrt{2} \right)}^{2}}={{p}^{2}}+{{1}^{2}} \\
& \Rightarrow 2={{p}^{2}}+1 \\
& \Rightarrow {{p}^{2}}=1 \\
& \Rightarrow p=1 \\
\end{align}\]
Hence, \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1\].
Now, we know that, \[\sin \theta =\dfrac{p}{h}\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{p}{h} \right)\].
On comparing the above relation with \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\], we have, p = 4, h = \[\sqrt{17}\].
Therefore, applying Pythagoras theorem, we get,
\[\begin{align}
& \Rightarrow {{h}^{2}}={{p}^{2}}+{{b}^{2}} \\
& \Rightarrow {{\left( \sqrt{17} \right)}^{2}}={{4}^{2}}+{{b}^{2}} \\
& \Rightarrow 17=16+{{b}^{2}} \\
& \Rightarrow {{b}^{2}}=1 \\
& \Rightarrow b=1 \\
\end{align}\]
Hence, \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)={{\tan }^{-1}}\left( \dfrac{p}{b} \right)={{\tan }^{-1}}\left( \dfrac{4}{1} \right)={{\tan }^{-1}}4\].
So, the expression becomes: -
\[\Rightarrow E=\tan \left[ {{\tan }^{-1}}1-{{\tan }^{-1}}4 \right]\]
Applying the identity: - \[{{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\], we get,
\[\begin{align}
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{1-4}{1+1\times 4} \right) \right] \\
& \Rightarrow E=\tan \left[ {{\tan }^{-1}}\left( \dfrac{-3}{5} \right) \right] \\
\end{align}\]
Finally using the identity, \[\tan \left[ {{\tan }^{-1}}x \right]=x\], we have,
\[\Rightarrow E=\dfrac{-3}{5}\]
Hence, option (d) is the correct answer.
Note: One may note that we can decrease the steps of solution a little by directly saying that \[{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)={{\tan }^{-1}}1\]. Here, we knew that \[{{\cos }^{-1}}\left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\]. So, \[\dfrac{\pi }{4}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)\]. Hence, the angle was \[\dfrac{\pi }{4}\] and \[\tan \left( \dfrac{\pi }{4} \right)=1\]. So, we did not required Pythagoras theorem here. But for the conversion of \[{{\sin }^{-1}}\left( \dfrac{4}{\sqrt{17}} \right)\] into \[{{\tan }^{-1}}\] function we needed Pythagoras theorem because we don’t know any particular angle for that.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE