
If we have a function as $f\left( x \right) = \dfrac{{4x + 3}}{{6x - 4}},x \ne \dfrac{2}{3}$ Show that $fof\left( x \right) = x$ for all $x \ne \dfrac{2}{3}$. What is the inverse of $f$?
Answer
583.2k+ views
Hint: Before attempting this question one should have prior knowledge about the concept of functions and also remember that $fof\left( x \right) = x$ means $f\left( {f\left( x \right)} \right) = x$ so to proof this use $f\left( {f\left( x \right)} \right) = f\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right)$, use this information to approach the solution.
Complete step-by-step solution:
According to the given information we have function $f\left( x \right) = \dfrac{{4x + 3}}{{6x - 4}},x \ne \dfrac{2}{3}$
First of all, we have to show $fof\left( x \right) = x$ which also means $f\left( {f\left( x \right)} \right) = x$
So, $f\left( {f\left( x \right)} \right) = f\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right)$
Now, substituting the value of $f\left( x \right)$i.e. $\dfrac{{4x + 3}}{{6x - 4}}$
$f\left( {f\left( x \right)} \right) = f\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) = \dfrac{{4\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) + 3}}{{6\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) - 4}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{\dfrac{{16x + 12 + 18x - 12}}{{6x - 4}}}}{{\dfrac{{24x + 18 - 24x + 16}}{{6x - 4}}}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{16x + 12 + 18x - 12}}{{24x + 18 - 24x + 16}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{34x}}{{34}} = x$
Hence proved, $f\left( {f\left( x \right)} \right) = x$
Let $g$be the inverse of the given function
So, we know that if g is inverse of function $f\left( x \right)$
Then $gof\left( x \right) = x$ and $fog\left( x \right) = x$
Now comparing the above statement with $fof\left( x \right) = x$
So, as we can say that after comparing $gof\left( x \right) = x$ with $fof\left( x \right) = x$
Here g is $f$
And on comparing $fog\left( x \right) = x$ with $fof\left( x \right) = x$ again here $f\left( x \right)$ is $g\left( x \right)$
Therefore, we can say that the given function is inverse of itself
Which means $f\left( x \right) = {f^{ - 1}}\left( x \right)$
You can easily see inverse of $f$ is equal to $f\left( x \right)$
Hence, ${f^{ - 1}}\left( x \right) = \dfrac{{4x + 3}}{{6x - 4}}$
Note: In the above solution we came across the term “function” which can be explained as a relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step solution:
According to the given information we have function $f\left( x \right) = \dfrac{{4x + 3}}{{6x - 4}},x \ne \dfrac{2}{3}$
First of all, we have to show $fof\left( x \right) = x$ which also means $f\left( {f\left( x \right)} \right) = x$
So, $f\left( {f\left( x \right)} \right) = f\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right)$
Now, substituting the value of $f\left( x \right)$i.e. $\dfrac{{4x + 3}}{{6x - 4}}$
$f\left( {f\left( x \right)} \right) = f\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) = \dfrac{{4\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) + 3}}{{6\left( {\dfrac{{4x + 3}}{{6x - 4}}} \right) - 4}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{\dfrac{{16x + 12 + 18x - 12}}{{6x - 4}}}}{{\dfrac{{24x + 18 - 24x + 16}}{{6x - 4}}}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{16x + 12 + 18x - 12}}{{24x + 18 - 24x + 16}}$
$ \Rightarrow $$f\left( {f\left( x \right)} \right) = \dfrac{{34x}}{{34}} = x$
Hence proved, $f\left( {f\left( x \right)} \right) = x$
Let $g$be the inverse of the given function
So, we know that if g is inverse of function $f\left( x \right)$
Then $gof\left( x \right) = x$ and $fog\left( x \right) = x$
Now comparing the above statement with $fof\left( x \right) = x$
So, as we can say that after comparing $gof\left( x \right) = x$ with $fof\left( x \right) = x$
Here g is $f$
And on comparing $fog\left( x \right) = x$ with $fof\left( x \right) = x$ again here $f\left( x \right)$ is $g\left( x \right)$
Therefore, we can say that the given function is inverse of itself
Which means $f\left( x \right) = {f^{ - 1}}\left( x \right)$
You can easily see inverse of $f$ is equal to $f\left( x \right)$
Hence, ${f^{ - 1}}\left( x \right) = \dfrac{{4x + 3}}{{6x - 4}}$
Note: In the above solution we came across the term “function” which can be explained as a relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

