
If $\widehat{a}$ and $\widehat{b}$ are orthogonal unit vectors then for any non-zero vector $\overrightarrow{r}$, the vector $\left( \overrightarrow{r}\times \widehat{a} \right)$ equals:
(a) $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\left( \widehat{a}\times \widehat{b} \right)$
(b) $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{a}+\left( \overrightarrow{r}\centerdot \widehat{a} \right)\left( \widehat{a}\times \widehat{b} \right)$
(c) $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}+\left( \overrightarrow{r}\centerdot \widehat{b} \right)\left( \widehat{b}\times \widehat{a} \right)$
(d) $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}+\left( \overrightarrow{r}\centerdot \widehat{a} \right)\left( \widehat{a}\times \widehat{b} \right)$
Answer
558.9k+ views
Hint: We start solving the problem by finding the vector perpendicular to the vectors $\widehat{a}$ and $\widehat{b}$ by using the fact that $\widehat{a}\times \widehat{b}$ is perpendicular to the vectors $\widehat{a}$ and $\widehat{b}$. We then find use the fact that any vector in the universe can be written in terms of three mutually orthogonal unit vectors to assume the vector $\overrightarrow{r}$. We then first calculate $\left( \overrightarrow{r}\times \widehat{a} \right)$, then $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]$ and $\overrightarrow{r}\centerdot \widehat{b}$. We then make necessary arrangements in $\left( \overrightarrow{r}\times \widehat{a} \right)$ to get the final answer.
Complete step-by-step solution
According to the problem, we are given that $\widehat{a}$ and $\widehat{b}$ are orthogonal unit vectors. We need to find which option equals $\left( \overrightarrow{r}\times \widehat{a} \right)$ for any non-zero vector $\overrightarrow{r}$.
We know that the cross product of any two given vectors is perpendicular to those two given vectors.
So, $\widehat{a}\times \widehat{b}$ is perpendicular to the vectors $\widehat{a}$ and $\widehat{b}$. Let us find the magnitude of the vector $\widehat{a}\times \widehat{b}$.
For two vectors $\overrightarrow{p}$ and $\overrightarrow{q}$ we know that $\left| \overrightarrow{p}\times \overrightarrow{q} \right|=\left| \overrightarrow{p} \right|\left| \overrightarrow{q} \right|\sin \alpha $, where $\alpha $ is the angle between the vectors $\overrightarrow{p}$ and $\overrightarrow{q}$.
So, we have $\left| \widehat{a}\times \widehat{b} \right|=\left| \widehat{a} \right|\left| \widehat{b} \right|\sin \left( {{90}^{\circ }} \right)$.
$\Rightarrow \left| \widehat{a}\times \widehat{b} \right|=1\times 1\times 1=1$.
So, we have three mutually orthogonal unit vectors $\widehat{a}$, $\widehat{b}$ and $\widehat{a}\times \widehat{b}$.
We know that any vector in the universe can be written in terms of three mutually orthogonal unit vectors.
So, let us assume $\overrightarrow{r}=x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right)$ ---(1).
Now, let us find $\left( \overrightarrow{r}\times \widehat{a} \right)$.
So, we have $\overrightarrow{r}\times \widehat{a}=\left( x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right) \right)\times \widehat{a}$.
$\Rightarrow \overrightarrow{r}\times \widehat{a}=x\left( \widehat{a}\times \widehat{a} \right)+y\left( \widehat{b}\times \widehat{a} \right)+z\left( \widehat{a}\times \widehat{b} \right)\times \widehat{a}$.
We know that for a vector $\overrightarrow{q}$, the cross product $\overrightarrow{q}\times \overrightarrow{q}=\overrightarrow{0}$. We also know that the vector triple product of $\overrightarrow{p}$, $\overrightarrow{q}$ and $\overrightarrow{s}$ is defined as $\left( \overrightarrow{p}\times \overrightarrow{q} \right)\times \overrightarrow{s}=\left( \overrightarrow{p}\centerdot \overrightarrow{s} \right)\overrightarrow{q}-\left( \overrightarrow{q}\centerdot \overrightarrow{s} \right)\overrightarrow{p}$.
$\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\left( \left( \widehat{a}\centerdot \widehat{a} \right)\widehat{b}-\left( \widehat{b}\centerdot \widehat{a} \right)\widehat{a} \right)$.
We know that the dot product of two orthogonal vectors is 0 and $\overrightarrow{p}\centerdot \overrightarrow{p}={{\left| \overrightarrow{p} \right|}^{2}}$.
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\left( {{\left| \widehat{a} \right|}^{2}}\widehat{b}-\left( 0 \right)\widehat{a} \right)\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\times 1\times \widehat{b}\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\widehat{b}\] ---(2).
Now, let us find $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]$. We know that scalar triple product of $\overrightarrow{p}$, $\overrightarrow{q}$ and $\overrightarrow{s}$ is defined as $\left[ \begin{matrix}
\overrightarrow{p} & \overrightarrow{q} & \overrightarrow{s} \\
\end{matrix} \right]=\overrightarrow{p}\centerdot \left( \overrightarrow{q}\times \overrightarrow{s} \right)$.
$\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=\overrightarrow{r}\centerdot \left( \widehat{a}\times \widehat{b} \right)$.
$\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=\left( x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right) \right)\centerdot \left( \widehat{a}\times \widehat{b} \right)$.
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\widehat{a}\centerdot \left( \widehat{a}\times \widehat{b} \right)+y\widehat{b}\centerdot \left( \widehat{a}\times \widehat{b} \right)+z\left( \widehat{a}\times \widehat{b} \right)\centerdot \left( \widehat{a}\times \widehat{b} \right)\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\left[ \begin{matrix}
\widehat{a} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]+y\left[ \begin{matrix}
\widehat{b} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]+z{{\left| \widehat{a}\times \widehat{b} \right|}^{2}}\].
We know that $\left[ \begin{matrix}
\overrightarrow{p} & \overrightarrow{q} & \overrightarrow{p} \\
\end{matrix} \right]=0$.
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\left( 0 \right)+y\left( 0 \right)+z{{\left( 1 \right)}^{2}}\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=0+0+z\left( 1 \right)\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=z\] ---(3).
From equation (1), we can see that $\overrightarrow{r}\centerdot \widehat{b}=y$ ---(4).
Let us substitute equations (3) and (4) in equation (2).
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=\left( \overrightarrow{r}\centerdot \widehat{b} \right)\left( \widehat{b}\times \widehat{a} \right)+\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}+\left( \overrightarrow{r}\centerdot \widehat{b} \right)\left( \widehat{b}\times \widehat{a} \right)\].
∴ The correct option for the given problem is (c).
Note: We can see that the given problem involves a lot of calculations, so we need to perform each step carefully in order to avoid mistakes. We should confuse the vector triple product with the scalar triple product while solving this problem. We can also assume $\widehat{i}$ and $\widehat{j}$ instead of $\widehat{a}$ and $\widehat{b}$, as they were also the mutually orthogonal unit vectors. Similarly, we can expect problems to find $\overrightarrow{r}$ if \[\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=6\], \[\overrightarrow{r}\centerdot \widehat{a}=4\] and \[\overrightarrow{r}\centerdot \widehat{b}=8\].
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]$ and $\overrightarrow{r}\centerdot \widehat{b}$. We then make necessary arrangements in $\left( \overrightarrow{r}\times \widehat{a} \right)$ to get the final answer.
Complete step-by-step solution
According to the problem, we are given that $\widehat{a}$ and $\widehat{b}$ are orthogonal unit vectors. We need to find which option equals $\left( \overrightarrow{r}\times \widehat{a} \right)$ for any non-zero vector $\overrightarrow{r}$.
We know that the cross product of any two given vectors is perpendicular to those two given vectors.
So, $\widehat{a}\times \widehat{b}$ is perpendicular to the vectors $\widehat{a}$ and $\widehat{b}$. Let us find the magnitude of the vector $\widehat{a}\times \widehat{b}$.
For two vectors $\overrightarrow{p}$ and $\overrightarrow{q}$ we know that $\left| \overrightarrow{p}\times \overrightarrow{q} \right|=\left| \overrightarrow{p} \right|\left| \overrightarrow{q} \right|\sin \alpha $, where $\alpha $ is the angle between the vectors $\overrightarrow{p}$ and $\overrightarrow{q}$.
So, we have $\left| \widehat{a}\times \widehat{b} \right|=\left| \widehat{a} \right|\left| \widehat{b} \right|\sin \left( {{90}^{\circ }} \right)$.
$\Rightarrow \left| \widehat{a}\times \widehat{b} \right|=1\times 1\times 1=1$.
So, we have three mutually orthogonal unit vectors $\widehat{a}$, $\widehat{b}$ and $\widehat{a}\times \widehat{b}$.
We know that any vector in the universe can be written in terms of three mutually orthogonal unit vectors.
So, let us assume $\overrightarrow{r}=x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right)$ ---(1).
Now, let us find $\left( \overrightarrow{r}\times \widehat{a} \right)$.
So, we have $\overrightarrow{r}\times \widehat{a}=\left( x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right) \right)\times \widehat{a}$.
$\Rightarrow \overrightarrow{r}\times \widehat{a}=x\left( \widehat{a}\times \widehat{a} \right)+y\left( \widehat{b}\times \widehat{a} \right)+z\left( \widehat{a}\times \widehat{b} \right)\times \widehat{a}$.
We know that for a vector $\overrightarrow{q}$, the cross product $\overrightarrow{q}\times \overrightarrow{q}=\overrightarrow{0}$. We also know that the vector triple product of $\overrightarrow{p}$, $\overrightarrow{q}$ and $\overrightarrow{s}$ is defined as $\left( \overrightarrow{p}\times \overrightarrow{q} \right)\times \overrightarrow{s}=\left( \overrightarrow{p}\centerdot \overrightarrow{s} \right)\overrightarrow{q}-\left( \overrightarrow{q}\centerdot \overrightarrow{s} \right)\overrightarrow{p}$.
$\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\left( \left( \widehat{a}\centerdot \widehat{a} \right)\widehat{b}-\left( \widehat{b}\centerdot \widehat{a} \right)\widehat{a} \right)$.
We know that the dot product of two orthogonal vectors is 0 and $\overrightarrow{p}\centerdot \overrightarrow{p}={{\left| \overrightarrow{p} \right|}^{2}}$.
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\left( {{\left| \widehat{a} \right|}^{2}}\widehat{b}-\left( 0 \right)\widehat{a} \right)\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\times 1\times \widehat{b}\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=y\left( \widehat{b}\times \widehat{a} \right)+z\widehat{b}\] ---(2).
Now, let us find $\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]$. We know that scalar triple product of $\overrightarrow{p}$, $\overrightarrow{q}$ and $\overrightarrow{s}$ is defined as $\left[ \begin{matrix}
\overrightarrow{p} & \overrightarrow{q} & \overrightarrow{s} \\
\end{matrix} \right]=\overrightarrow{p}\centerdot \left( \overrightarrow{q}\times \overrightarrow{s} \right)$.
$\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=\overrightarrow{r}\centerdot \left( \widehat{a}\times \widehat{b} \right)$.
$\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=\left( x\widehat{a}+y\widehat{b}+z\left( \widehat{a}\times \widehat{b} \right) \right)\centerdot \left( \widehat{a}\times \widehat{b} \right)$.
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\widehat{a}\centerdot \left( \widehat{a}\times \widehat{b} \right)+y\widehat{b}\centerdot \left( \widehat{a}\times \widehat{b} \right)+z\left( \widehat{a}\times \widehat{b} \right)\centerdot \left( \widehat{a}\times \widehat{b} \right)\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\left[ \begin{matrix}
\widehat{a} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]+y\left[ \begin{matrix}
\widehat{b} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]+z{{\left| \widehat{a}\times \widehat{b} \right|}^{2}}\].
We know that $\left[ \begin{matrix}
\overrightarrow{p} & \overrightarrow{q} & \overrightarrow{p} \\
\end{matrix} \right]=0$.
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=x\left( 0 \right)+y\left( 0 \right)+z{{\left( 1 \right)}^{2}}\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=0+0+z\left( 1 \right)\].
\[\Rightarrow \left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=z\] ---(3).
From equation (1), we can see that $\overrightarrow{r}\centerdot \widehat{b}=y$ ---(4).
Let us substitute equations (3) and (4) in equation (2).
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=\left( \overrightarrow{r}\centerdot \widehat{b} \right)\left( \widehat{b}\times \widehat{a} \right)+\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}\].
\[\Rightarrow \overrightarrow{r}\times \widehat{a}=\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]\widehat{b}+\left( \overrightarrow{r}\centerdot \widehat{b} \right)\left( \widehat{b}\times \widehat{a} \right)\].
∴ The correct option for the given problem is (c).
Note: We can see that the given problem involves a lot of calculations, so we need to perform each step carefully in order to avoid mistakes. We should confuse the vector triple product with the scalar triple product while solving this problem. We can also assume $\widehat{i}$ and $\widehat{j}$ instead of $\widehat{a}$ and $\widehat{b}$, as they were also the mutually orthogonal unit vectors. Similarly, we can expect problems to find $\overrightarrow{r}$ if \[\left[ \begin{matrix}
\overrightarrow{r} & \widehat{a} & \widehat{b} \\
\end{matrix} \right]=6\], \[\overrightarrow{r}\centerdot \widehat{a}=4\] and \[\overrightarrow{r}\centerdot \widehat{b}=8\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

